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FOREWRD

The energy for life comes from the sun .n the.fo0m, of light. Plants

absorb sunlight and through the energy conyersion and synthetic process

known as photosynthesis convert water and carbon dioxide to carbohydrates

such: as starch and to gaseous oxygen. .Some men have long dreamed of supple-

mrnting this process. with practical abiological syithesis of carbohydrates

from CO2 and water., For both technical reasor and economic reasons this

has remained a dream.

The time when 'an economic synthesisoqf starch in a factory: will become

a reality is still in the future --- :in the range of ten tO thirty years.

The advent qf,,a technology for using insolubilized, stabilized enzymes makes

it possible to consider the synthesis of 'starch from'C02 and hydrogen' gas

with high efficiency. The hope of huge amounts of inexpensive energy becom-

ing available either by atomic fusion or by capture and conversion of solar

energy raises the'possibility of converting water to oxygen and hydrogen at

a sufficiently low cost to rival· photosynthesis.

The specter'of future widespread starvation arises from the increasing

population and the distinct possibility of some form of ecological collapse

leading to a sudden catastrophic decline in food production. Such apprehen-

sions provide ample motivation for consideration of systems for artificial

manufacture of starch and for delineation of technological areas requiring

some years of research before suchk a system could become practical..

This report gfixrst' details the rationale for making such a study. Then

follows a discussion of the enzyme.,catalyzed routes of synthesis available

and a choice as to the mos·t. promising route. .Because. so.many factors imporn

tant to this choice are not known accurately, and some technology is not yet

i

·r

I I

l 

* X, .

. . .

. .. .

':
. .

S



developed, the, choice must be tentatiye.. For the guidance of future, workers,

there 's a discu5sioQnof enzymes inyolved, of enzyme, insolubilization. tech-

nology, of possible engineering approaches, w~ith examples in the form of

model calculations for both reactors' and separators. There is a section on

some of the other problem areas. Each section has its own bibliography.

It is hoped that this study will be a useful starting point for other,

more thorough studies of systems leading ultimately to the achievement of this

important goal. It is also hoped that scientists and engineers will be moti-

vated to seek, and government agencies to grant the support necessary to carry

out the research needed to make the dream a reality.

ii
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Introduction and Selection of Synthetic Pathway
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THE SYNTHESIS OF STARCH FROM CARBON DIOXIDE

USING INSOLUBILIZED STABILIZED ENZYMES

An Alternative to Intensive Agriculture?

James A. Bassham

INTRODUCTION

All life requires a continuous supply of chemical energy. For most

life on earth, including man, the ultimate source of such energy is the

photosynthetic conversion of water, carbon dioxide, and other minerals

to oxygen, carbohydrates and other organic compounds. The energy for

photosynthesis comes from the sun in the form of the visible light energy

absorbed by the plant's pigments: chlorophyll and accessory pigments.

The most abundant immediate organic products of photosynthesis in

green plants are the carbohydrates, especially starch, which is made of

great numbers of glucose molecules linked together. The equation of the

formation of glucose and oxygen from water and carbon dioxide during

photosynthesis is given by:

(1) CO2 + H2 0 = 1/6 C6H1 2 06 + 0 2 'AG = + 114.4 Kcal.

The one sixth mole of glucose plus the mole of oxygen gas together contain

114.4 Kcal. more than the water and CO2 from which they were formed. This

energy came from sunlight. It can be released again when glucose is oxi-

dized by oxygen to make water and carbon dioxide.

Man and other animals, aerobic bacteria, the non-green parts of

plants, and even the green tissues of plants in the dark all depend on

this release of energy for their life processes. Without the organic

products of photosynthesis and gaseous oxygen, most life would cease to

exist.
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A considerable fraction of the people in the world today are unable

to obtain enough food to provide sufficient energy for good health. There

is, of course, an additional problem of poor nutrition, particularly pro-

tein deficiency. But even on the basis of calories alone, many people are

without a sufficient supply of energy to maintain a healthy existence.

This problem will become much more severe during the next several decades.

This is not a statement of opinion, but a virtually certain prediction,

based on present population, its age profile, and the predictable world

food supply and distribution facilities. While most students of this

problem agree on the need for some decrease in the population growth rate,

and some hope for significant progress in this area, even the most opti-

mistically low estimates of population by the year 2000 show a very large

increase over the present level.

There have been impressive gains in agricultural productivity in

overpopulated countries as modern agricultural practices have been brought

to those countries. New hybrid strains of rice and other grains have

brought temporary relief from chronic famine in some areas. The appli-

cation of chemical fertilizers, pesticides, mechanized tilling, planting,

and harvesting have all helped to hold off famines which would otherwise

have kept the population in check through starvation in India, Bangladesh,

and other similar countries.

Can such agricultural miracles, continue to prevent disasters greater

than those which are already occurring from time to time? After all, many

of the famines which we have witnessed recently have been due to wars and

other social aberrations. Unquestionably, modern agriculture practices

can be considerably extended in underdeveloped countries beyond their

present usage.
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There are several reasons for pessimism on this score. Some of

these reasons involve economic and social institutions, and their inabil-

ity to deliver the fruits of modern technology where they are perhaps most

needed. These problems are beyond the scope of the present discussion,

and in any event would affect just as adversely the proposal made in this

report. More pertinent to the present discussion is the inherent ecolog-

ical frailty of increasingly intensive modern agriculture.

As many ecologists have so eloquently noted, there is great danger

in massively reducing the diversity of species. When man eliminates most

of the plant and animal species over a wide area in order to' concentrate

on the production of a few crops, there is a greatly increased risk that

a major portion of the remaining, widespread species may succumb to the

attack of a newly introduced (or long dormant) disease or predator. This

is partly because the attacking agent finds an unlimited supply of its

energy souce; that is, its food. It is partly because its natural enemies

are most likely among the species already eliminated or depopulated. And

it is because the intensively cultivated crop may be a highly bred new

strain in which genetic information necessary to develop resistance has

been removed through breeding. 

Not long ago, one of these high-yield varieties of maize (corn)

which had been widely adopted in the United States became the victim of a

plant disease. A substantial part of the crop was lost.. Newly developed,

'kinds .of rice have greatly increased the productivity of the main food

staple in parts of Asia. This increased productivity has made possible

further population growth in some already heavily populated areas.· Con-

sider the magnitude of the disaster if, at some future date, 80% of the

annual crop of rice in these areas should be lost due to the spreading of

* S- -j,
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some long dormant rice disease for which this high-bred strain had no re-

sistance.

There are other severe ecological problems resulting from the spread-

ing of intensive, widespread 'mnodern" agriculture. Runoff of DDT and.

other pesticides into rivers, lakes and oceans; runoff of excessive amounts

of fertilizers and subsequent eutrification of lakes and streams; the long-

recognized and still serious problem of wind and water erosion of topsoil

(and consequent silting of waterways); loss of nutritional value in plants

fed nitrate and phosphate but no trace elements... These are a few of the

adverse effects of modern agricultural practice.

Recognizing all of these undesirable results of man's present agri-

culture, one can perhaps be excused for dreaming about the possibility

of turning back much of the earth's surface to a multi-specied state. No

doubt, one would want to preserve the productivity of fruits and vegetables,

perhaps with the gardens and groves interspersed with stands of trees and

shrubs, and fields of grass. But the great areas now devoted to intensive

cultivation of cereal crops could be perhaps reduded to 25 % of their

present extent, with the rest left for parks and natural areas.

Given the present and increasing serious food crises in the world,

the reduction of agriculture on the scale just proposed can hardly seem

to be more than a dream. And indeed, it is likely to remain a dream through

the next two critical decades. There is a possibility, however, that the

dream could become a reality in time, even without a substantial population

reduction. It could become a reality if we can learn how to synthesize

man's principal energy food, starch, economically in factories. By this I

do not mean synthesis of starch from other forms of organic matter such as

petroleum, for we are rapidly running out of such energy rich-substances.
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What is needed is the economic synthesis of starch from carbon dioxide.

There are a number of technological problems to be solved before such

an economic synthesis can be achieved, and these will be discussed later.

The overriding problem, however, is one of energy. Given a really inex-

pensive and abundant source of energy, the other problems are all capable

of solution within 20 years or less, depending on the level of research

effort.

Where could this energy come from? At present the industrialized

nations, such as the United States, are facing an energy crisis. Sources

of energy such as geothermal power,, liquified coal, or even breeder reac-

tors may help meet this crisis but are not likely to provide energy in

the quantity and at the low cost required for economic synthetic food.

There are, however, two possible sources of massive low-cost, enormous

energy supply. Both involve nuclear'fusion reactions.

Fusion reactions in the sun are the source of sunlight, which is

already the source of energy for nearly all life on earth.. There is more

than enough sunlight falling on deserts and other nonproductive areas of

the earth to 'provide not only all of 'our non-biological energy require-

ments, but also to fulfill our biological requirements as well. .There is

now a rapidly growing interest in solar energy conversion. It is a reason-

able supposition that the development of solar energy. as an economic source

of power will be the next big national technological commitment in the

United States.

Naturally, at the present time, solar energy conversion looks uneco-

nomic. Even its protagonists talk about solar energy becoming more eco-

nomically attractive after not only the technical problems have been solved,

but also when competing energy sources have become much more expensive (as:
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seems certain).

While this pessimism is probably warranted for the next de or so;

it may be unrealistic for the future - say beyond the year 2000. Much of

the present pessimism is based on the high cost of solar cells built of'

silica crystals for the space program. Electrical energy ,produced by

such devices costs about 1000 times too much to b'e'competitive with pres-

ent energy sources.

Solar energy falling on the desert is free. All we have to do is to

convert it to electrical or chemical energy with some mass-produced, thin-

layered device capable of efficiency somewhere comparable to that of the

green cells of plants - that is about 40 %. 'We would do well to be guided

in our design by the mechanism used in the photosynthetic cell. Unfor-:

tunately, we don't know these mechanisms in all their details. We do know

quite a lot and are learning more rapidly.

The photosynthetic energy-converting apparatus consists of a number

of very thin membranes, with pairs joined at the edges to make very thin

discs, called thylakoids. The spaces inside these discs are all inter-

connected by a fretwork of flat tubules. The membranes themselves appear'

to be largely nonconducting (insulators) but contain protein-lipid com-

plexes imbedded in the phospholipid bilayers. These complexes are the

points of initial conversion of electromagnetic energy to electrochemical

energy.

Light energy is first absorbed in the chlorophyll and other pigment

molecules, and the absorbed energy in the form of an excited state, of the

electrons in the pigment molecules can then jump from one pigment molecule

to another. Perhaps more correctly,. we can think of the whole array of

pigment molecules within a certain distance as sharing the excitation
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energy. This energy packet, or "exciton" is transmitted in a very short

time to the energy conversion complex. There the exciton causes an electron

to be promoted out of a pigment molecule and onto some acceptor, according

to present theories. The oxidized pigment molecule (the one that has lost

an electron) will eventually recover it from water. After two molecules

of water have lost four electrons this way, a molecule of gaseous oxygen,

02' evolves.

In the meantime, the electron promoted out of the chlorophyll mole-

cule is being'transmitted from one carrier to another, and will eventually

undergo another photochemical "promotion" through a second energy conversion

center which has received another exciton. By this time, the electron is

at the chemical potential of gaseous hydrogen, and H2 could be evolved by

the lamellar system.. This does not happen ordinarily, as the plant has

other uses for this reducing power. Instead., the electrons at the poten-

tial of H2 are used to reduce carbon dioxide to carbohydrates, including

starch.

The energy used in this process, two light photons of wave lengths

shorter than 700 nm, is considerably more than would be required to take an

electron from water and raise it to the potential of hydrogen gas. The

energy per mole of photons (per einstein) for 700 nm light is 40.5 Kcal,

so that two einsteins is worth 81 Kcal. The energy to split two molecules

of water to oxygen 'and hydrogen'is 2 x 56.7 = 113.4 .Kcal.

C2) 2H20 - 2H2 + 02 AG = 2(+56.7) = +113.4 Kcal.

Since four electrons must be transferred in this reaction, the energy per

mole of electrons (per equivalent) is 113.4/4 = 28.4 Kcal. Thus the two

einstein to one equivalent process is 28.4/81 - 35 % efficient.

However, in the process of moving the electron up to the potential of
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H2, the photochemical system also manages to use some of the left over

energy to convert the biochemical acids, phosphate and adenosine diphos-

phate (ADP) to their anhydride, adenosine triphosphate (ATP)and water,

thereby conserving another 12 Kcal.

(3) Pi + ADP --- ATP + H20 AG° = +7.5 Kcal. AG.= +12 Kcal.

Here, AG = 12 Kcal. is greater than AG° because of the low concentration

of Pi and the high ratio of ATP concentration to ADP concentration. At

least one ATP molecule is made for each two electrons transported, so the

overall efficiency in the lamella may be calculated to be (28.4 + 6)/81

42 %.

There are a number of theories about the physical and chemical mecha-

nisms involved in this efficient energy-conversion process. Great prog-

ress towards full understanding has been made during the last twenty years.

It seems not overly optimistic t6. expect that.the' next decade will bring

sufficiently detailed knowledge about the mechanism to permit the princi-

ples to be modeled in artificial systems for direct conversion of solar

energy to either electrical energy-or chemical'energy in a usable form.

Indeed, some scientists have already built models, based on their current

concepts of the photosynthetic mechanisms. These models, while generating

electrical energy from light with extremely poor efficiency, nevertheless

offer sufficient promise from a theoretical standpoint to warrant extended

fundamental· investigation.

Aside from solar energy conversion by copies of photosynthetic sys-

tems, other attractive schemes utilizing more conventional approaches have

been proposed and are being studied. If any such systems become econom-

ically feasible and are built, one can predict that energy generation will

become less expensive in real dollars as time passes. This prediction is
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based on the fact that the system is based on a free and inexhaustible

energy source.

The second type of energy from atomic fusion reactions is fusion

power plants on earth. There have been great hopes for inexpensive power:

from fusion reactors in the past. Unfortunately, progress towards a work-

able system has not been as rapid as hoped, even though. significant gains

have been made in the length of time that the ionized' gas (plasma)'can be

contained in its magnetic "bottle". Our present'limited commitment to

fusion reactors in the United States may not be sufficient to produce

fusion power before the year 2000. There is, however, a distinct possi-

bility that the U.S.S.R. may achieve important new breakthroughs during

the next decade, and that might stimulate the U.S. to make a greater effort

also. Thus, there is a reasonable possibility that abundant, inexpensive

nuclear power might become available in 20 years.

Possible Interim Need for Artificial Starch Synthesis

The foregoing section suggests, in consideration of the long range

future-say beyond 1995, there is a rational argument for beginning now to

develop the techniques of synthesis that would permit the synthesis of

carbohydrates from C02 under the expectation that by that time sufficient

quantities of energy may'be available at a low enough cost to make such a

synthesis attractive. What about, the less long-range future, the.period

beginning about 1'980?- Is it .conceivable that by that time population and

nutritional circumstances in. parts of the world might be so desperate as

to warrant heroic but somewhat uneconomic measures solely for the preservae-;

tion of life? This is quite a different presumption 'from the earlier

argument where it was assumed that setting up factories for the synthesis

of starch might become an attractive option to compete with total reliance
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on conventional: agriculture. '

Certainly the population in presently underdeveloped and overpopulated

countries is going to increase alarmingly by 1980, even if birth-control

measures now being.attempted are moderately successful. A significant

falling off of a major cereal crop'such as rice due to any one of a variety

of adverse events (disease, abnormal weather, war and social disruption,

etc.) could easily trigger a condition of famine which might persist for

several years. The "excess" production by North American granaries has

been able to supply enough cereal crops to alleviate famines in the past,

but these surpluses are likely to grow somewhat smaller as North American

'population grows and other foreign markets increase due to population

growth in other countries with large populations and marketable goods for

trade. Also there is the severe problem of overseas shipment and distri-

bution when a demand suddenly develops.

Given such circumstances, a starch factory located in the country of

need might well be allocated power even if uneconomical. In the choice

between calories of food for survival, and other energy requirements, a

government might well allocate its power for food.

Of course, such a sophisticated and expensive factory as will be re-

quired is not going to be built in time during an emergency. It might,

however, be built ahead of time as.a pilot project, by cooperation between

the local government and contributions from the developed countries. Pos-

sibly it could be part of a complex which would also include power genera-

tion by atomic fission, perhaps a new generation breeder reactor. The

plan would be that the power plant could mainly allocate its power for .'

other purposes when there was no serious food shortage. The starch fac-

tory could be run on a limited basis, at times of day when there is less
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energy demand. Then, if famine struck, the starch plant could be operated

at full capacity and could temporarily take the entire power output of the

power plant. Thus the starch factory would be justified on the basis of

insurance against disaster and the development of experience in food syn-

thesis rather than on the basis of the marketability of its product in

normal times.

Problem Areas in Building a Starch Factory

In the foregoing section I have speculated on the possibility that

governments might want to build a starch factory as soon as 1980. This

sounds rather optimistic in terms of social institutions being intelligent

enough to plan for disaster before it strikes. There is perhaps an even

greater optimism in thinking that the technical problems involved in the

construction of such a plant could be solved by 1980. As we shall see,'

these problems are formidable, and only the application of a substantial

research effort beginning in the near future would bring any possibility

of solutions by such. an early date.

The need for such factories will grow inexorably in the future. It

seems safe to predict that eventually the necessary research will be under-

taken. Many research aspects are already being undertaken in connection

with more immediately attractive projects. Thus there is rapidly growing

literature on the use of insolubilized enzymes in industrial processes.

Research on dialysis and osmolysis membranes, presently being used for

such diverse problems as medical research and water purification;may pro-

vide materials helpful in carrying out the severe separation problems

described later.

Other problems more specific to the synthesis of starch will require

extensive research. Preeminent among these are the insolubilization and
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stabilization'of enzymes catalyzing the synthetic reactions of starch syn-

thesis from CO2 . Also enzymes needed to regenerate ATP from ADP and inor-

ganic phosphate and to reduce biological electron carriers such as ferre-

doxin and nicotine adenine dinucleotide phosphate (NADP) must be studied

in this way. Most work on stabilized enzymes to date appears to'have been'

focussed on enzymes required to break down polymeric molecules such as pro-

teins into their subunits. Certainly most of the industrial applications

have been limited to such hydrolitic reactions. Unfortunately, many. of

the enzymes which would be involved in synthetic paths are more complex

and of higher molecular weight (for example the enzyme ribulose diphosphate

carboxylase) and may prove more difficult to stabilize.

Aside from the enzyme problem, any conceivable synthetic process

leading from CO2 to starch will require a number of difficult separations

of metabolites and other substances in the output from the reactors. Even

assuming rapid and significant advances in selective membrane technology'

these problems loom as very difficult and possibly limiting to the entire

project. Even though present technology for reactors with insolubilized

enzymes may favor carrying out one or two biochemical steps at a time,

economy of separations may dictate a multicomponent reactor. Thus there.

is a tradeoff which must be solved by systems engineering.

Among other severe problems may be mentioned the collection of carbon

dioxide from the atmosphere where it occurs at a partial pressure of only

0.03 % (300 ppm). These and other problems will be discussed in more de-

tail later.

I 
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SELECTION OF SYNTHETIC PATHWAYS

Chemical Energetics

Before proceeding to a discussion of the optimal synthetic path for

the synthesis of' starch from CO2, it is useful to consider the overall

energetics of this' process. ;.From Equations 1 and 2 (Introduction), it is

clear that the. energy for .the formation of oxygen'and' of one-sixth glucose

molecule from carbon dioxide (gas) and water (+114.4"Kcal) is virtually

the same as the energy for the formation of two moles of hydrogen gas and

one mole. of oxygen gas from'two moles ofwater'(+*113.4 Kcal).' If Equa-

tion 2 for the splitting of water to hydrogen and.oxygen is subtracted

from the' photosynthetic equation"'(Equation 1) we see that the reduction of .. '

carbon dioxide to water and glucose (Equation 4) is essentially an equi-

: libriium process, with.very little free'energy change. (Free energy changes

in this and other equations in this section are mostly based on a table of

free energy data by. K. Burton, which appeared as an appendix to an article,.

by Krebs and Kornberg in 1957)..

1
(4) ) + 2H2 H2 06 6HlG° = +1.0 Kcal.'

Equation 4.tells us that for the reduction of CO2 to glucose, hydrogen

gas is 'nearly sufficient. If the reaction were a simple one.(few steps),,

it might even.be possible to force it, without other inputs of chemical

.energy, by simply increasing the pressure of H2 and CO2. However, the
2' .

reaction pathway is quite complex, involving many' steps, and additional

input of chemical energy' is required to make the reactions proceed at a

practical'rate. 'Also," the desired end product is not free glucose, but

starch, and additional chemical energy is required to link up glucose resi.-

dues by removing water,. Thus we shall see that' green plants use not only

I', I I
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the equivalent of two moles of H2 gas, per mole of C02 reduced to starch,

but also 3 6 moles of ATP, the biochemical molecule most commonly employed

to provide additional chemical energy.

In our consideration of synthetic paths' for the reduction of C02

to starch, we start with the assumption that the supplied electrical energy

from the solar energy converter or atomic reactor will be used to electro-

lyze water to make hydrogen and oxygen. This will be the major energy

input, at least for the chemical process. Of course, hydrogen could be

obtained with less energy cost from other sources, such. as hydrocarbons,

but it is a basic assumption of this study that only completely oxidized

raw materials will be used. If by the time starch synthesis from C02 be-

comes feasible there are still enough petrochemicals to permit their use

for food, we assume they will be converted to protein via bacterial metabo-

lism, as is being done even now on a limited scale.

Carbon dioxide can be reduced with hydrogen to four different oxida-

tion levels and these will be of some interest in our discussion of path-,

ways to starch. The reductions of CO2 to formic acid, formaldehyde,

methanol and methane are shown in Equations .5 through 8, respectively:

(5) CO2(g) + Hz 9- HCOOH(liq) G -GO..=+11.6 Kcal.

(6) CO2 (g) + 2H2 -HCHO1 + HOG = +6.4 Kcal.
22H(iM,aQ) 2

(7) CO 3H2 - CHO H.. , + H20 G
°

'

= -4.3 Kcal.2 (g) ~ 3 ClM,aqj 2

C8 ) 2(g) + 4H2 -CH4(gas) + 2H2O AG° = -31.2 Kcal.

Formaldehyde is at the same oxidation level' of carbon as glucose, and is

somewhat less stable:

C9) HCHOCIM aqc - 6 C2Hl2O6('lMaq AG4 F -5.3 Kcal..~~~~~~~~2lma -
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Reduction of Carbon Dioxide to Formaldehyde

From the foregoing energy considerations, and for the important objec-

tive of choosing the simplest possible pathway, one might conclude that

the chemical reduction of CO2 to formaldehyde followed by the enzymatic,

conversion of formaldehyde to glucose and then to starch should be the

method of 'choice.. Despite serious problems with this pathway, described 

below, this remains an attractive alternative to the pathway which we later

recommend.

The first and most serious difficulty is that there appears to be no

hknown way to reduce CO2 directly' to formaldehyde in' good yield. This must

be due in part to the fact that formaldehyde is unstable with respect to

its further. reduction to methanol (see Equations 6 and 7)'. However,: it.

seems possible that further research on this reduction could turn up a

catalyst and other reaction conditions which might allow the efficient

formation of formaldehyde from CO2 and H2.

Of course the reduction can be allowed to proceed to methanol, and 

then the imethanol can be reoxidized to formaldehyde. Apparently this

can be done in satisfactory yield. The objection to such a route-is that

it uses up an extra mole of hydrogen gas, thus increasing the energy budget

for.the electrolysis of water by 50%. At the same time, there appears to

;' be no way 'to recover the energy .released:in the reoxidation of methanol to'

formaldehyde. .

While a 50% increase in the energy requirement for the electrolysis

of water seems a high price to pay, it might be justified if the subsequent

enzyme-catalyzed pathway were to be .so simplified and the number of isteps.

so reduced as to save a comparable amount of energy in the operation of the

enzyme reactors and separation processes. Fromour analysis we doubt that
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there is enough. compensating simplicity for this pathway. However, we

offer it in more detail later..as af alternative to. the recommended pathway.

In considering this alternative pathway, it will be seen that a second

problem is the lack.of knowledge about the key enzyme which would be re-

quired to bring about the addition of formaldehyde to a five,-.carbon sugar

phosphate. Sucht a reaction is needed to permit the construction of a

cyclic pathway leading to glucose formation and regeneration of the three-

carbon acceptor.,

Reduction of.Carbon Dioxide to Formic Acid

Another possible chemical reduction of CO2 would be its reduction to'

formic acid. Further enzymatic reduction would then be required, either

of the formate itself, or of some product formed from formate. A survey

of enzymically-catalyzed reactions which incorporate formate into larger

molecules did not reveal any in which the product could be converted to

the carbohydrate level by a few reactions as are required for the conver-

sion of the product of the carboxylation reaction of photosynthesis, dis-

cussed later.,

Conversion of Carbon Dioxide to Two- or Three-Carbon Compounds by Organic

Syntheses

In theory, carbon dioxide could be converted to simple two carbon or'

three carbon compounds by well known organic reactions. These compounds

could then serve as substrates for enzymically-catalyzed reactions leading

to carbohydrates. However, the energy cost of these reactions must be

kept in mind. Also it is necessary to produce organic compounds that are

not stereoisomers', only one of which can be used as a substrate for subse-

quent enzymi'cally-catalyzed reactions. Finally, the use of non-enzymic

steps should result in a shortened enzymic pathway to carbohydrates. We
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have.not found any routes that would satisfy these three criteria, when

compared with. the path chosen..

As an example of.thes:e difficulties, consider the synthesis of acetal-

dehyde, via acetylene. Calcium carbonate is converted to'CO2 and CaO by

heating Cwhich requires' energy), and the CO2 can be stored for a subsequent

carboxylation reaction.! The CaO is reacted with C (from coke?) at 20000

to make calcium carbide and carbon monoxide..

lO) caco5 heat~cah + co2
' l0) Ca 3CO CO. CO2

Ca20000
(11) CaO + 3C 200 CaC

2
+ CO

Possibly' the carbon monoxide could be burned to make more CO2 and recover

some of the energy' as heat. The "calciun carbide could then be reacted

with. water to give acetylene: .

(12) CaC 2 + 2H2P.---- HC -- ICH + 'Ca(OH)2 '-

Acetylene is a good starting point fobr'.,a number of syntheses including the

formation of,acetaldehyde:

(13) CH CH + H20 CHCHO2 HgS34 3.

Acetaldehyde could be carboxylated by an enzyme from certain bacteria to

give pyruvic acid. Unfortunately, even this three carbon compound requires

( 1:.4) CH3 CHO + CO2 CH
3
COCOOII

a: -number of biochemical steps before it can be'transformed to 3-phospho-

glyceric acid, which is needed for reduction to a simple three-carbon

sugar. These steps are described' later, under carboxylation reactions.

A basic premise for this study is that the path chosen should require

no raw materials except carbon dioxide, water and electrical energy. Thus

a pathway which. calls for ,elemental carbon is unacceptable,.. unless it also'



-, 18 -

can be generated from CO2. To do so would require an additional large

input of energy. Of course, acetaldehyde is a partly reduced compound

of carbon, and only one-third as much hydrogen would be needed to convert

pyruvate and CO2 . to glucose as is required for converting only CO2 to glu-

cose. However? the use of heat to split oxygen from CO2 is likely to con-

sume far more energy than the splitting of water by electrolysis.

As another example of the energetic cost of carrying out the usual

'pathways of organic chemistry, consider the fixation of C02 by a Grignard

reaction. All of the ether usually used would have to be recycled, and

the magnesium hydroxide produced would have to be converted back to

metallic magnesium. But even more difficult, the alkyl halide, for example

methyl iodide, would have to be' synthesized from CO2, H2, and iodide.

'Since many organic reactions are less quantitative' than enzymically-cata.

lyzed reactions, such complex regenerative pathways are in most cases

likely to be much less efficient from an energy standpoint than pathways

catalyzed almost entirely by enzymes. Thus, unless the non-enzymic path

were significantly shorter, it could not compete. We have found no such

pathway that is shorter -- in fact all appear to be longer.

Enzymically-Catalyzed Reactions, Beginning with CO2

Having seen the difficulties inherent in utilizing various non-.

enzymically-catalyzed reactions, including the reduction of carbon dioxide,

we turn now to the only other alternative, the carboxylation reactions

and subsequent steps catalyzed by enzymes and leading from CO2 to starch.

The Photosynthetic Carbon Reduction Pathway

The most important pathway for conversion of CO2 to glucose in nature

is the photosynthetic carbon reduction cycle (Basshamt, et al., 1954), called

the reductive pentose phosphate cycle. (Figure 1).. This pathway begins with_
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Figure 1. Reductive and Oxidative Pentose Phosphate Cycles.

Heavy lines indicate reactions of the Reductive Pentose Phosphate Cycle.

Light lines indicate reactions of the Oxidative Pentose Phosphate Cycle.

Enzyme Key

Reductive Pentose Phosphate Cycle (Photosynthesis) only

2.7.1.19 phosphoribulokinase

3.1.3.11 hexose (heptose) diphosphate

4.1.1.39 ribulose diphosphate carboxylase

4.1.2.13 fructose diphosphate aldolase

Reductive and Oxidative Pentose Phosphate Cycle and Triose Phosphate Oxidation

1.2.1.13 triose phosphate dehydrogenase (NADP+)

2.2.1.1 transketolase

2.7.2.3 phosphoglycerate kinase

5.1.3.1 ribulose phosphate 3-epimerase

5.3.1.1 triose phosphate isomerase

5.3.1.6 ribose phosphate isomerase

Oxidative Pentose Phosphate Cycle only

1.1.1.44 phosphogluconate dehydrogenase (decarboxylating)

1.1.1.49 glucose-6-phosphate dehydrogenase

2.2.1.2 transaldolase

I:I

I

.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.~~~~~~ : 
., I:

I 

I 

. I .

: I

. P I



- 20 

ADP C02

Ribulose-1,5-diphosphate

(5-carbons) 

I. 1.1 .49
(

NADP +NADPH

A TP

NA DPH,
C

1.1.1

NADP+*-

6-Phosphogluconate

(6 carbons)

Glucose-6-phosphate

(6 carbons)

XBL 711-5016

.I

P\



- 21 -

the carboxylation of a five carbon sugar diphosphate, ribulose-1,5-diphos-

phate. No intermediate six carbon compound is detected, and the products

of the reaction are two molecules of 3-phosphoglyceric acid. Since this

and other acids are ionized at physiological pH, this, and other acids will

be referred to in their ionized forms. Also the symbol(@)will be used to

denote a phosphate group,'-PO 3 H . The enzyme catalyzing this carboxyla-

'(15) 'H2CO °H 2CO0 

C=O HOCH .

H2 0 + HCOH + CO2 -) CO
2

+ CO 2 + 2H

HCOH HCOH

H2CO P H2CGO 

ribulose-1,5-diphosphate - D-'3-phosphoglycerate

tion reaction is commonly called ribulose-1,5-diphosphate carboxylase.

The sugar acid, 3-phosphoglycerate (3-PGA) is more oxidized than a

sugar, and can become a three carbon sugar only after the carboxyl group

is reduced to an aldehyde. Since the carboxylate ion is stable (resis-

tant) towards reduction, it must first be activated. The organic chemist

might convert it to an acyl chloride, but living cells use the terminal

phosphate group of ATP to convert to another kind of acid anhydride, an

acyl phosphate. The enzyme for this reaction is 3-phosphoglycerate kinase.

(16) HCO H.O 

HOCH + ATP ) HOCH + ADP
I I
C=O C=O

I I

3-PGA phosphoryl-3-PGA

The acyl phosphate may now be reduced.. The reducing agent is nicotine

adenine dinucleotide phosphate in. its reduced form (NADPH). The enzyme is
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triose phosphate dehydrogenase..

,, 7) ' , O. D

.'HOCH , + NADPHF ' HO0. + NADP + + Pi

* ; ., O i=O .. , . .,H. . .. .

00~P~. H

P.3PGA GAld3P

The product of this reaction, is 3-phosphoglyceraldehyde (GAld3P), a three

carbon sugarposphate Ctriose phosphate).,

The biochemical reducifng agent,. NADPH:, carries two'electrons and, in

effect, transfers a hydride 'ion to the acyl phosphate.. The redox poten-

tial for NADPH at pH 7 is -0.324 volts, about O..1 volts less negative than

that of hydrogen gas in equilibrium with protons at pH 7., or the reduced

;form of the non-heme iron:protein ferredoxin, both of which have a redox

potential a't pH 7 f-0.42 vol t.''Thus NADP is readily reduced in

' presence of an oxidoreductase by reduced ferredoxin from'the light reac-

.tions of photosynthesis '

(18)' 2Fd + NADP+ - NADPH + 2Fd+ 3

In non-photosynthetic bacteria which utilize hyarbgen gas as an energy

-'. source, there is a'hydrogenase enzyme which can catalyze' 'he reaction be-'

tween hydrogen gas and ferredoxin:

*: :' (19) H2 + 2Fd+ 3 - 2H + 2Fd
2

:': , ' This is a reversible react'ion,. and:depending on 'the potential' of th.e par-

' , ticular ferredoxin employed, several atmospheres of hydrogen gas may'e

25 ·;'' ·. :' required to. drive the reaction in the forward direction.shown. lhis.direc-

tion is, also favored by increasing. the p.,, ..

Reactions 15, 16 and 17 provide a direct route. for the utilization of

. < '.,''. ; ,the reducing power of H2 'for the reduction of the carboxylation product to

. a: I , 
; , :~ i 1 .' , l. I 
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sugar.. There may be alternatives to this route such as the electrochemical

reduction of either NADP+ or ferredoxin, or the chemical reduction of

+
either with H2 and a suitable catalyst.' The chemical reduction of NADP -

could be complicated by the possibility of more than one site of reduction

C20) 2 + 2

H2 X or H

R R R

NADP+ NADPH Inactive Form
I II

on the pyridine ring of NADP +. 'Form I of NADPH is the one required for

the triose phosphate dehydrogenase which is NADP-specific.

Once glyceraldehyde-3-phosphate is formed, no further inputs of chem-

ical energy are required to make glucose-6-phosphate (G6P), the precursor

of starch. GAld3P isomerizes to give dihydroxyacetone phosphate (DHAP).

The enzyme for this reaction is triose phosphate isomerase. Then the two

triose phosphates undergo an aldol-type condensation catalyzed by aldolase.

(21) H2CO H2CO 

HOCH- C=O

HC=O H2 COH

GAld3P DHAP

This gives fructose-1,6-diphosphate (FDP) which is half hydrolyzed to

fructose-'6-phosphate (F6P) in the presence of fructose diphosphatase.

(22) H2 O H H CO~ 
nHOIH + =O"H CO·

HC-= H2 COH H 

GAld3P : DHAP . FDP



- 24 -

(23)

20 , ...
' ,,+ H 0.." 2 : "

. .

...... OH H
FDP F6P

There remains only an,isomerization, catalyzed by hexose phosphate isomer-

ase, to convert F6P to G6P.'

C24)' H2CO H'CO
2''. 1 . /0° ,-,2 ' 2H2C_

F6P G6P

'In green'plant cells, the conversion of G6P to starch begins with the

movement of the phosphate group to the number one carbon position, cata-

lyzed by phosphoglucomutase.

(25) H2CO ' H OH

' OH,

G6P G1P

Glucose-l-phosphate then reacts with ATP to give adenosine ,diphosphoglu-

cose CADPG) and pyrophosphate (PPi). The enzyme is ADPGlucose pyrophos-

phorylase.

(26) ,CH 9OH. HPIOH,

+ ATP _ ~ H 'I I -
P ATX___ -Po -pO,- ! -

- r i b jaden.

O O

~ADP~G + PPiGlP

,' !'

,1 I

I

..

: I

, ..

.;

, .

,· r

, . .

.'

, I 
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This ADPG then reacts with the starch chain to add one glucose residue to:

the chain.. Thus: the synthesis of starch from glucose-6-phosphate, as it

C27)' (C6 H1 005n + ADPG ) (C6 H1005)n+l + ADP

occurs in'plants:, requires the net conversion of one molecule of ATP to

ADP for each. glucose residue (C6H
1 0
05) added to the starch chain.

Completion of.the Reductive Pentose Phosphate Cycle

So far we have traced the path of carbon from the carboxylation to

starch. However, for the cycle to run;. the carbon dioxide acceptor,

ribulose-1,5-diphosphate (RuDP) must be regenerated. Clearly, for the

compounds of the cycle to be maintained at a constant level, six molecules

of C02 must be incorporated for each glucose-6-phosphate molecule converted

to starch. Each CO2 molecule taken up reacts with five carbon atoms of

sugar (Equation 15), producing two molecules of 3-PGA whidc are reduced to

two triose phosphate molecules. Thus, six carboxylation reactions produce

twelve triose phosphate molecules, of which two are used for glucose phos-a

phate synthesis and ten are required to regenerate the six molecules of

RuDP. The following process which converts five triose phosphate molecules

(1-5.carbon atoms) to three RuDP molecules (15 carbon atoms) thus occurs

twice for each net G6P synthesized.

The first steps in this process are the conversion of two triose

phosphates to F6P, and have already been described by reactions 21', 22 and

23. The next step is a reaction between F6P and GAld3P to give a five

carbon sugar, xylulose*-5-phosphate (Xu5P) and a four carbon sugar, erythrose-

4-phosphate (E4P). This reaction is mediated by the enzyme transketolase.

The reaction actually involves the transfer of the carbon atoms one and

two of the fructose to the coenzyme, thiamine pyrophosphate (TPP), forming
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a glycolaldehyde:~TPP compound which remains bound to the enzyme. The

remaining four carbon atoms of F6P are released as: the aldose phosphate,

E4P. ''The glycolaldehyde-TPP complex reacts with another aldose phosphate,

in this case GAld3P, forming Xu5P.,

C28) H. K H O' ' H2O -O H2CH

H2COH + H \ -1 HOI +

.M2CH~ H CO 2 H COH V
H2 CO* H CO -

HCOO (P

F6P · GAld3P E4P Xu5P

Erythrose-4-phosphate reacts with DHAP in a reaction mediated by

aldolase which is analogous to reaction 22, but which produces in this

case a seven carbon sugar diphosphate, sedoheptulose-1,7-diphosphate .SDP).

This diphosphate also is hydrolyzed to its.monophosphate, sedoheptulose-

7-phosphate CS7P).

(;29),. ( (E2O H2.CO /

HOCH ;/ ' O
\H H -HHHC2

C--(tHOC H H OH
dH H

E4P DHAP SDP

C30)

SDP + H2 0 )

S7P.

Sedoheptulose-7-phosphate undergoes a transketolase-mediated reaction,

similar to Reaction 28', giving another molecule of Xu4P and an aldopentose

I

. I I

. I.
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(R5P) ' .

C31) H2 C0H H2COH
O. 7 I /°7 . H O

H H \SOH + HCOH +2 H17,H HOCH:

HO~ H H
2
00 HCOH

J_ - - H2 COC

S7P GAld3P R5P Xu5P

Ribose-'5-phosphate is converted to.the ketopentose phosphate,

ribulose-5-phosphate, by the enzyme ribose phosphate isomerase. Xylulose-

5-phosphate is converted to ribulose-5-phosphate (Ru5P) by the enzyme

phosphoketopentose epimerase.

C32) HC2COH H2 COH

21o 2o1
HOIFI HnOH

H0OH H OH
H2COt H2CO 

Xu5P Ru5P

C33) H2CO @
2,~.0 H

OH

H2 OH

cl=o
HCOH

HCOH

H2CO 0

R5P Ru5P

This completes the rearrangement of five triose phosphate molecules

to three pentose phosphate molecules, but one further step is required to

'form ribulose-l,5-*diphosphate, the carboxylation. substrate. This is the

conversion of Ru5P to RuDP witfr a molecule of ATP, mediated by phospho-

ribulokinase..

I 
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C34) F2CFOH HzO o
C=O C=O

ATP + HOH HYOH + ADP

HiOH' HIOH

H2 CO H2CO 

Ru5P RuDP

This reaction completes the reductive pentose phosphate cycle. The

complete net equation for the synthesis of one molecule of G6P may now be

written:

C35) 6CO2 + 12NADPH + 18ATP + 12H+ ) G6P + 12NADP + 18ADP + 17Pi

If we add the ATP required to convert G6P to starch, the, total re-

quirement comes to 12 molecules of NADPH (coming from 12 molecules of H2

or its equivalent) and 19 molecules of ATP. For each CO2 molecule con-

verted to starch, this comes to two H2 molecule and 36 molecules of ATP.

In our investigations of other possible pathways, none have been found

that required a smaller energy input. Since H2 must come from the split-

ting of water (Equation 2), each mole of H2 represents an expenditure of

at least 56..7 Kcal. Each mole of ATP formed from ADP and Pi (Equation 3)

costs at least 12 Kcal. Actually the cost will be much'more, perhaps

25 Kcal per mole, considering the problems of a regenerative pathway,

discussed later.

The Pyruvate-Malate Photosynthetic Pathway

For about 10 years, the reductive pentose phosphate pathway was

thought to be the only'photosynthetic pathway for the incorporation and

reduction of carbon dioxide., Then a second pathway was found in certain

tropical grasses such as. maize and sugar cane (Korts'chack et al., 1965,

Hatch .& Slack, 1970).. This pathway, now known to exist in some other kinds
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Reductive Pentose Phosphate Cycle

ribulose diphosphate

6[RuDP + C02'+ H20 - carboxylase 3-PGA]
Reaction 15

12[3-PGA + ATP p.h. .hoglye_.rae kin P-3PGA],,
Reaction 16

* 12[P-3PGA + NADPH triose phosphate dehydrogenae NADP+
Reaction 17

4[GAld3P _triose phosphate isomeraeAse

Reaction 21

aldolase
2[GAld3P + DHAP -aldolse> FDP]

Reaction 22

2 [FDP +. H2 0 fruct.osediphgsp hatase F6P + Pi
Reaction 23 +

2[F6P + GAld3P transketolase_ E4P + XuSP]
Reaction 28

2 [E4P + DHAp aldolase _ SDP]
Reaction 29

2[SDP + H20 fructose dip phosphata se S7P +Pi]
Reaction 30

+ Pi + GAldSP]

2 [S7P + GAld3P --t --s----as- Xu5P + R5P]
Reaction' 31

2[R5P pentosephosphate isomerases RuSP]
Reaction 33

4 [Xu5P p-hosphoketopen-tose-epimrerase RuSP] 

Reaction 32

6 [Ru5P + ATP PhQsphoribulQkinasemRuDP + ADP]
Reaction 34

F6P hexose_phobspbate isomerase G6P
Reaction 24

Net Reaction: 6 CO
2

+ 12 NADPH + 18 ATP -- G6P + 18 ADP + 17 Pi + 12 NADP+

.,

, I ., .. 

.: 
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of plants besides tropical grasses, has received much study recently,

although some physiological aspects are still unknown. It is generally

agreed, however, that the pathway involves the carboxylation of phosphoenol-

pyruvate (PEPA) to give oxalacetate. This four carbon acid is then re-

duced with NADPH from the light reactions to give malate, another four

carbon acid.

(36) C C°2 37) 02H
1°o +C2 -- + coNADPH rH2
2Op+ CO2 Y

CO2 IC=O HsOH

CO2 2 CO2

PEPA Oxalacetate Malate

It is thought that this malate is then translocated, either from one

kind of green cell to another, or'perhaps fromr.cytoplasm into one kind of

chloroplast, where it, is-oxidatively decarboxylated to give pyruvate and,

CO2, as well as NADPH.

+ NADP+ -CO 2+ NADPH + C-O
H4OH + CP2

CO
2

malate pyruvate

This pyruvate is then translocated back to the site of the reaction 36,

where it is activated with ATP and'inorganic phosphate to give PEPA,

pyrophosphate and adenosine monophosphate (AMP). A special enzyme, pyru-

vate-phosphate dikinase, found only in this' type of green plants, mediates

this reaction,

; 
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(38)C Hp'2
C=O + Pi + ATP -I AMP + PPi + CO0

Co
202

pyruvate PEPA

The carbon dioxide and NADPH released by reaction 37'are then used

for starch and sugar synthesis via the reductive pentose phosphate cycle

already described. Thus: this cycle represents a preliminary stage of

photosynthetic carbon dioxide fixation. It costs 2 molecules of ATP per

CO2 fixed, since the conversion of one ATP molecule to one AMP molecule

is equivalent to the conversion of two molecules of ATP to ADP on an

energy basis. The plants using this cycle grow in bright sunlight and are

not limited by energy, but rather are limited by C02 and/or water. The

use of this cycle permits the conservation of both water and CO2.

While this pyruvate-malate pathway has considerable physiological

value to certain plants, it is apparent that it accomplishes little in any

artificial pathway from CO2 to starch, in which energy efficiency is impor-

tant.

Carboxylation of Acetaldehyde or Acetate

Certain bacteria are able to carboxylate acetaldehyde or reductively

carboxylate acetate,in either case giving pyruvate. The difficulties of

making acetaldehyde from CO2 (these apply also to acetate) by organic

synthesis have already been mentioned. However, there are biochemical

pathways whereby these two carbon compounds might be formed. In either

case, however, we come immediately to the problem just mentioned of con.-

verting pyruvate to PEPA., There is the extra complexity and energy price

of converting pyruvate to PEPA without any other offsetting advantages.

There is also the fact that pyruvate-phosphate dikinase is reputed to be a
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rather unstable enzyme. Pyruvate can also be converted to PEPA via 'a

"shuttle" mechanism involving reductive carboxylation to malate, oxidation

to oxalacetate, and decarboxyiation to malate in a reaction which uses

up a molecule of GTE', the henergy equivalent bf ATP.. This: does not seem

to be worth the energy and trouble, even; if'there were efficient routes

to acetate or acetaldehyde..

From considerations'such as these, it begins to be clear that it" is

probably better to.stick to reactions involving only compounds fairly

cl6sely related to sugars, where relatively small changes of. functional

groups are required. Rather than listing all the various carboxylation

reactions we have examined and.rejected, we summarize by stating that 'the

system chosen by green plants appears to be the most efficient available,

if only enzymically-catalyzed steps are to be used.'
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Reversed Oxidative Pentose Phosphate Cycle

Aside from the photosynthetic reductive pentose phosphate cycle for

carbon dioxide reduction to sugar, there: are. two other cyclic pathways

involving sugar phosphates which we have considered., One: of these is the

formaldehyde pathway, already referred to and described below. 'The other

would be a reversal of the oxidative pentose phosphate cycle used by

respiring cells. (Figure 1).

This oxidative pathway begins with. the oxidation of glucose-6-phos-

phate CG6P). with NADP+ to give 6-phosphogluconic acid and NADPH.

(39) H2 O ~i H2 (39 a) 2OH
HH

+ NADP+ --- 0 
H H HO \ H Ad HH HOH

HFOH

H. ' . . ' ,H C HHH2CO 
G6P 6-phosphogluconalactone 6-phosphoglu-

conic acid

The second step in this pathway is the oxidation of 6-phosphogluconic acid,

again with NADP+, to give ribulose-5-phosphate (R5P), CO2, and NADPH.

C40) ,O 2H 2OH
HCOH

NADP + HOtH ) NADPH + C02 + OH

HCOH
H,~OY H2OH

, 6-pposphogluconitc Ri
acid

This reaction is reported to. be reversible. '(Horecker and Smyrniotis, 19521..

Indepbndent calculations of the free emergies of formation.'of the reactants
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and products in this reaction also indicate, that'the .reaction is reversible

CBassham and Krause, 19.691..

Once the RuSP is formed, it i.s:.converted back to trios'e and hexose

phosphates via a reversal of many of the reactions involved in the reductive

cycle. Thus-, two molecules of RuSP are converted to two molecules of Xu5P.

This is a reversal of reaction 32.. One molecule of Ru5P is converted to

.85P, reversing reaction. 33.. Then Xu5P and R5P react via a transketolase

mediated step to give S7P and GAld3P', reversing reaction 31.

The next step is mediated by an enzyme, transaldolase, not used in

-the reductive cycle. In its presence, GAld3P and S7P are converted to E4P

and F6P .

C41) Hai=O H2 HCO H2 0

O H + HO OH 3 H. fOH

H 0 H H OHOH

GAld3P S7P 'E4P' .F6P

Another transketolase.-mediated 'reaction then converts E4P and the other

Xu5P molecule to F6P and GAld3P. The end result of this sequence of reac-

tions, beginning with Ru5P, is the conversion of three molecules of.Ru5P

to two molecules of F6P and one of GAld3P. These could be converted to

G6P and the complete cycle repeated. The operation of this cycle thus

results in the oxidation of G6P to CO2 and the reduction of two molecules

of NADP
+

to NADPIR for each C02 produced..

No ATP i-s produced fuom this cycle, and from energy consi.derations

it soon. becomes clear that it could be run backwards only if some energy

input could be devised', To do this, one must consider hich. steps in the

oxidative cycle are highly irreversible, that is involve large negative
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free energy changes in;the oxidatiye directlion..

The most important suck step is the oxidation, of G6P to 6.-phospho -

gluconic:iacid. As: indicated' CReaction. 39)? this reaction.takes place in

two steps.: The. first step i.s the oxidation of the G6P to 6-phosphoglucono-

lactone, with the conversion of NADP
+

to NADPH ... A similar reaction in which

glucose is oxidized to gluconolactone with the conversion of NADP+ to NADPH

has been studied CStrecker and Korkes, 1952)., and it was found that the

reaction 'to the lactone is highly reversible. The large negative free

energy change occurs in the hydrolysis of the lactone to the free acid.

It may be assumed that the corresponding free energy changes accompanying'

the oxidation and hydrolysis of the phosphorylated compounds might be

sijmilar., Thus what is needed is a way to provide energy for the conversion

of the. 6-phosphogluconic acid to its lactone. It is known that some

hydroxy-acids can. be converted to their lactones with acid and heat. It

is not known in what yield this particular lactonization. could be..effected.

If research is to be conducted on promising pathways for the conversion of

2CO to starch in.the future, this lactonization reaction and the subsequent

enzymic reduction of the lactone with NADPH would seem to be worthy of

study.

Assuming for the moment that this reaction could be.carried out

efficiently, there is one other point at which an energy input Would be

required. In order to convert some of the G6P to GAld3P in the reversed

pathway, F6P would have to be converted to FDP with.ATP. in a reaction

mediated by phosphofructokinase.,.

(-421 H2C|Q H2 0

.,.' .:a' jOH + ,ATP. )ADP + / -CO P
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With these reactions for energy, input,. the reversed path-may'be

visualized according-to .the following scheme.. The end result of this path

would be the conyersion. of carbon dioxide to G6P, using heat and acid, as

well as ATP and NADPHI.. The requirement for ATP would be less than that of

thie. reductive pentose phosphate cycle of pkotosynthesis. This appears to

be the main possible advantage of this path, which. will be termed the

"PReversed Oxidative Pentose Phosphate Cyclet ' (See Figure 1, thin lines).

Reversed Oxidative Pentose Phosphate Pathway;

6 Phosphogluconate
' dehydr~genas e

6 [NADPH. + CO2 + Ru~ P -R-eaction 40 R 6-phosphogluconic acid +
6 ~~J~pH + + ~ deh dron 40 I' +NADP +]

6 [-hs gunae> 8Kcal. heat acih 6-phosphogluconolactone]
[6-phospRogluconate eaction 39a R

G6P d~hydrogenas'eGP·+ND+
6 [67phosphogluconolactone + NADPH 6Reaction 39 G6P + NADP

[G6P hexosephosphate isomerase
Reaction 24 R F6P]

ATP + F6P phosphofructokinase DATP F6P ) -FDP + ADP
Reaction 42

aldolaseFDP -aldolase DHAP + GAld3PReaction 22 R

DHAP triose phosphate isomerase GAld3P
Reaction 21 R

transketolase
2 IF6P + GAld3P Reaction 28 XU5P + E4P]

transaldolase
2 IF6P + E4P Reati o 4 SYP + GAld3P]Reaction 41

2 S7P + GAld3P transketolase > ,XuSP + 'RSP2STP + d React'on: 31

2 RP pentosephos, hate isomeraseRu5..Readtioiif 33'

IXuSP p hophok.etopentose RupSPeae]Reaction 32 . u
F:,...... 

. .
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Net 'Reaction:;

6 COZ + i2NADPH +.,ATP + > 50 Kcal heat --.-) G6P + 12NADP
+

+ ADP

If a way, can. be found to convert 6-phosphQgluconate to its lactone

efficiently with heat and acid, the overall energy requirement could be

less than that of the reductive pentose phosphate cycle. The difficulties

and inefficiencies, described later, in regenerating ATP, could give an

advantage to the reversed oxidative pentose phosphate cycle which requires.

only one ATP molecule per G6P formed as compared with 18 ATP molecules

required by the reductive pentose phosphate cycle. However, a decision to

build a system based on the reversed oxidative cycle could only be made

after further. research had demonstrated;the practicality of reversing the

two oxidative steps of the cycle and especially of converting the 6-phospho-

gluconate to its lactone.

''Formaldehyde-Pentose Phosphate, Cycle

As mentioned earlier,' it is possible t6' devise a cycle based on the

incorporation of formaldehyde. This cycle'has the initial disadvantage,

already discussed, of requiring 50% more H2 due to the fact that CO2 must

first be reduced to methanol and then reoxidized. Nevertheless, there are

compensating characteristics in this cycle which warrant its serious:con-. ,-

sideration., As outlined below, the cycle would require several fewer steps

than either. the reductive pentose phosphatecycle or the reversed oxidative

pentose phosphate cycle..

A large uncertainty in the formaldehyde cycle is the initial step.

There are apparently, rather few biochemical reactions which- incorporate

formaldehyde directly into sugar phosphates-. Kemp and Quayle C1967)

described the uptake of formaldehyde by·certain. bacteria which metabolize



- 38 -

C-. compounds s'uck as methanol or.methane in, which_ the C-1 compounds are

converted' t form aldehyde which then is incorporated into sugar.phosphates.

Kemp and Quayle C19,66) reported that, a pentose phosphate cycle operates to

regenerate a pentose phosphate formaldehyde acceptor. In their scheme,

formaldehyde was condensed withi ribose-5-phosphate to give allulose-6-

phosphate, a 6-carbon sugar monophosphate. They proposed that this sugar

phosphate was converted to fructose-6-phosphate, after which rearrange-

ments via enzymes of the pentose phosphate cycle regenerated the ribose-

5-pphosphate acceptor.. However, further study of this system has revealed

that the reactions are not quite as thought (Quayle, 1972). In any event,

the enzyme involved in the formaldehyde incorporation is difficult to iso-

late, and its reaction not yet, well-characterized..

Of perhaps more interest is a report CDickens and Williamson, 1958)

of the participation of formaldehyde in reactions mediated by transketolase.

The reaction studied was between formaldehyde and hydroxypyruvate, and the

products were CO2 and dihydroxyacetone in an irreversible reaction.

C43) H2 COH H. OH

HCHO + =O = CO

C02H H2 COH

If.transketolase could mediate a reaction between formaldehyde and XuSP,

the products would be GAld3P and dihydroxyacetone.

C44) H2.OH H2 .OH H=Q0
HCHO + CO A :=O + HOH',

. OH
H2 CO Id ; i 
. , .
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We could find no report of such a reactin. in the literature.. Letters to

Professors Dickens and Racker answers suggesting that the transketolase

reaction with formaldehyde may- not have. been further studied. Thus the

following scheme based on. this reaction must remain. tentative. Neverthe-.

less it is given because it represents a considerable simplification of

the enzyme-mediated path to carbohydrate.

A reaction mediated' by tri:okinase would convert dihydroxyacetone to

its phosphate, DHAP, with ATP.,

C45) H2 oH H yO0

2C

PDHAP.

For each three pairs of triose phosphates formed (six triose phosphates),

one DHAP would be converted with triose phosphate isomerase (Reaction 21 R)

to GAld3P, so that the net result of the three transketolase incorporations

of formaldehyde would be two DHAP molecules and four GAld3P molecules.

The conversion of five molecules of triose phosphate to three mole-

cules of pentose phosphate'would follow just the same pathway as in the

reductive pentose phosphate cycle, except that the final product would be.

Xu5P instead of RuSP. Two of the pentose phosphate molecules made by the

transketolase reactions are XuSP to begin with, and the R5P could be con-

verted to Xu5P via RuSP (Reactions 33 and 32 R)..

The, reactions of these three XuSP molecules with formaldehyde, and sub-

sequent steps 'produce, six molecules. of tri.ose phosphate, one more than needed

to regenerate the.Xu5P molecules. Each two complete cycles would thus form

two triose phosphate molecules from which a net of one G6P would be. made.
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Formaldehyde - Pentose Phosphate Cycle

6 [HCHO + Xu5P DHA + GAld3P]
Reaction 44

6[DHA + ATP triokinse. ' ADP '+ DHAP
Reaction 45

triose phosphate iomera GAld3RDHAP GAon21RdP
Reaction. 21R

3[DHAP + GAld3P ' al'do FDP]
Reaction 22.

3[H20 + FDP fructose' diohosohatazse
Reaction 23

2[F6P + GAld3P. transketolase Xu5P
Reaction 28

F6P + Pi] 

+ E4P]

2[E4P + DHAP I aldolase
Reaction 29

2 [SDP + H20 fructoae' diphasphatase 
Reaction 30

2[S7P + GAld3P transketolase ) Xu5P + R5P]
Reaction 31.

2[RSP pentose phosphate isomerase 
Reaction 33

2[Ru5P phosphoketopentose epimerase>

Reaction 32R

F6P hexose-phosphate-isqomerase
Reaction 24

Ru5P]

Xu5P]

-- 'G6P

Net Reaction: 6 HCHO + 6 ATP ---- G6P + 6 ADP + 5 Pi

SDP]

S7P + Pi

1, 
.. 
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The overall net reaction, starting with formnaldehyde would be:

C46) 6HCHO + 6ATP .---PG6P t 6ADP t± S5Pi

This requirement for 6 ATP molecules (1 ATP per HCHO1 compares with

18 ATP molecules for the reductive pentose phosphate cycle and 1 ATP for

the reversed oxidative pentose phosphate cycle. The formaldehyde cycle

requires no reductive reactions, and this would eliminate the need for a

system to reduce NADP+ to, NADPH.. To calculate overall energetics, one

must include the three moles of H2 needed to reduce CO2 to formaldehyde

via methanol. Starting with H20, 3 moles of H2 costs 3 x 56.7 = 170.1

Kcal. Adding 1 ATP C12 Kcal) gives a total chemical energy requirement of

182. Kcal. However, if the regeneration of ATP is very inefficient, the

total energy cost could be less than in the case of the reductive pentose

phosphate cycle.

Comparison of Three Pathways

We are now in a position to compare the three principal pathways we

have discussed. There may be other pathways, but we reiterate our contention

that pathways involving direct incorporation of one-carbon compounds into

carbohydrate-like compounds seem likely to be the most efficient. It will be

recalled from our earlier discussion, that organic syntheses of two-carbon

compounds appeared to require too much energy. Biochemical incorporation

of carbon into non-carbohydrate compounds must be followed by a large number

of biochemical steps to convert such. compounds to carbohydrate.

Of the three pathways discussed aboye, only the photosynthetic carbon

reduction pathway,, the rreductive pentose phosphate cycle, is known to occur

as written in. nature, All of its enzymes are together in.the same physio-

logical environment in.the chloroplast-. Thus, their ability to function.

in a common environment of pH, metabolite concentrations, Mg ion concentration,
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etc., is assured., This. could be a great adyantage if it develops that the

best system for reactors leading to starcht synthesis i4s a multienzyme

reactor., Considering the magnitude of the separations of products and

reactants involved, there seems to be a high probability that such a multi-.

enzyme system may be advantageous.

Of course, all of the enzymes of the reversed oxidative pentose phosphate

cycle also occur together. However, it would be necessary, in the case of that

cycle to isolate the .6-phosphogluconic acid,prior to its conversion to 6- 

phosphogluconolactone., The fact that 6-phosphogluconic acid is the only

carboxylic acid in the cycle is not all that helpful, since most of the

other metabolites are phosphates, and hence also anions at neutral pH.

The formaldehyde;pentose phosphate cycle.would be significantly simpler

than the other cycles, since it substitutes the transketolase reaction, the

enzyme which is required in all three cycles, for the carboxylationr reaction,

and the reductive6 reactions of:the other.cycles. It has its own kinase

reaction, but so do the 6ther cycles, the reductive pentose cycle requiring

two' kinase reactions with two different 'enzymes. 

' ·::' Weighiiing against this advantage are three serious disadvantages: (1)

A requirement of 50% more H2, and (2) Our present lack of certainty that

the transketolase 'reaction with formaldehyde and Xu5P would work. (3) If

formaldehyde would react with Xu5P', it might also react with. F6P to give

dihydroxyacetone and E4P, and with S7P to give dihydroxyacetone and R5P.

Since these are also intermedi.ates in the proposzed cycle, a scheme could

perhaps be worked out to use such reactipons,, but some problems, of control

might ensue, More serious would b.e a reaction. of formaldebyde with dihydroxy-

acetone phosphate to give erythrulose-4- phosphate. This reaction has been
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reported (Charalanipous and Mueller, 19531.,. Another enzyme would then

haye to be found to convert erythrulose.-4-phQsphate to E4P, an intermediate

compound of the cycle.

There is also the' danger that formaldehyde, a fairly reactive chemical,

might poison some of the enzymes, if a multienzyme system were employed.

Given these uncertainties about the interaction of formaldehyde with the

enzymes discussed, plus the higher initial energy input to convert 'CO2 to

formaldehyde via methanol, we are unable to select the formaldehyde path as

our first choice. However, it would appear that this pathway could become

the one of choice if a way could be found to reduce CO2 directly to formalde-

hyde, and the enzymology should prove to be favorable after further study.

The reversed oxidative pentose phosphate cycle offers a possible advantage

over the reductive pentose phosphate cycle in terms of a large saving on ATP

input.,. Depending on how efficiently the 6-phosphogluconic acid could be

converted to 6-phosphogluconolactone and how much energy must be expended to

regenerate ATP from ADP and inorganic phosphate, this could be a very important

factor. Since both of these factors are unknown, it is'impossible to make a

decision on this. basis.

A severe disadvantage of the reversed oxidative pentose phosphate cycle

is our lack of knowledge about the feasibility of reversing the two oxidative

steps, From a thermodynamic standpoint, both steps are 'feasible, if the acid '

can be chemically converted to the lactone.. Overall, this cycle has about the

same number of steps as the reductive pento.se phosphate cycle. Since this

cycle has not been rur backward? and -since w.e are, not certain that the acid

can be efficiently converted to the. lactone, 'we feel we, must make the' reductive.

pentose phosphate cycle our first choice.
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The reductiye pentose phosphate cycle is the unique biochemical pathway,

selected by, evolutions, for the conversion. of CO2 to starch. It seems probable

that no better pathway' can be devised to operate. under 'the conditions existing

.'_in a'IiVing cell. This does not rule out the possibility that a more efficient

pathway can be devised using conditions not tolerable in a living cell. Also,

the liying cell enjoys advantages that make. for great efficiency. In particular,

all the reactions of the reductive pentose phosphate cell take place within an

organelle only 5 micrometers in diameter. Thus, the complexity of the cycle

doesn't cause any diffusional problems. Another great advantage of the

living cell is the great selectivity of permeability of transport of chemicals

through the limiting membrane of the subcellular organelle, the chloroplast.

From such considerations, it clearly is not justified to conclude that

what is best for the microbiochemical factory of the green plant cell is

necessarily best for the macrochemical factory built by man. But perhaps

because of the lack of known facts about key features.of some possible.

alternative pathways, we have been unable to find such a pathway which is

demonstrably more efficient than the photosynthetic pathway.

From a purely chemical standpoint the reductive pentose phosphate cycle

is remarkably efficient. Since the starting point for our proposed starch

synthesis is water and CO2, it is fair to calculate efficiency on this basis.

The energy stored in converting one mole of C02 and one of water to a mole'

of 02 and a sixth.mole of glucose is +114.4 Kcal (Reaction. 1. The energy

requirement of the cycle per CO2 mole incorporated is two moles of H2 and

three moles of ATP (Reaction 35).. Spli.tting twQ moles. of water to give

twomoles of H2 and one of .02 cost 113..4 Kcal (Equation 2., while three moles

of ATP iss worth about 36 Kcal. Thus the overall efficiency of the reductive
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pentose phosphate cycle may be calculated as 114.4/149.4' 75%. Of course,

the cost of producing the ATP outside. of the: cell may be much higher than' it,

is in the cell Cwhere. it costs about 56 Kcal to store 36.'Kcal as ATP).

One other advantage of the reductive pentose phosphate cycle may be

mentioned., if a factory based on stabilized enzymes is to be built, it is

important to have a source of abundant, inexpensive materials to supply the

enzymes, since they appear likely to have a limited life, even in the

stabilized state. All of the enzymes of the reductive pentose phosphate

cycle are of course present in all green leaves.

Recommended Pathway

A principal purpose of this study was to examine possible pathways

.for the conversion of CO2 to starch, using energy and'water, and to recom-

mend the optimal pathway. At the outset, we had expected to' select the

most promising several pathways 'on the basis 'of simplicity, energy effi- .

ciency, and probability that the pathway could.provide a successful route

in terms of practicality of the reactions and of the engineering concepts

necessary to convert the reactions intouseful industrial steps. We had 

expected that it would be possible to incorporate steps of organic synthesis,

not involving the use' of enzymes-with their attendant difficulties, and to

reserve the enzymes for those later steps in the pathway in which stereo-

specificity of the pr6ducts must be maintained. .'

At the same time, we had expected that there, might be diverse bio-

chemical steps from different .systems that.could be incorporated into the

pathway' to give a system nmore efficient than- any found in nature. We

didn'.t really expect that. this- would be the-'case If all the steps were tQ

be enzymically Catalyzed, for evolution has had a long time 'to perfect'

'the best such system., However, if some organic reactions· carried out under
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nonrphysiological conditions were included, it could 'change the rules of

the game' and othe.r pathways could become rmqre. efficient.

As it turns out, we are. forced to make a choice in- favor of the photo-·

synthetic carbon' reduction path:--the reductive pentose phosphate cycle.

This choice is dictated partly by ignorance in the literature about key

steps in alternative pathways and partly by ignorance about organic reac-

tions for converting carbon dioxide to reduced carbon compounds with a

high. energy efficiency. Organic chemists have not been faced with this

problem. In our present petrochemically-based technology of organic com-

pounds it is much cheaper' to begin reaction sequences with already reduced

organic compounds. Those chemists who have been faced with the problem of

organic synthesis with: CO2, say, in the synthesis'of 14C-labeled organic

compounds, have not been under any constraints as to the use of energy or

energy-rich compounds such as lithium aluminum hydride.

'Problems and Possible Solutions

Having chosen the redtictive'pentosesphosphate cycle, we must consider

its disadvantages and how they may be overcome. The first obvious disad-

vantage is, the carboxylation reaction.itself. As the later sections will

show, the.carboxylation enzyme, ribulose diphosphate carboxylase, is a

high molecular weight protein, rather low in turnover number, somewhat

unstable? and probably subject to complex regulatory mechanisms in vivo.

Thi's enzyme is known to require CO2, not bicarbonate ion, as its substrate.

Thus in an. llquld s-ys-temi in which a large portion of. the carbon is' in the .

form of bicarbonate. ion it migkt be ne.ceSsay\ to include some carbonic

anhydrase, an enzyme that speeds the equilibtration. between. C02 and carbonic

acid. However, this requirement can probably be obviated by' using higher
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concentrations off,Co2, and it nay-be.;an engiineering advantage to be able to

do just that. As d.scussed' under Properties of the Enzymes, lower molecular'

weight forms of the carboxylase are found in. certain bacteria, and this-

could be an advantage in plant design.. Beyond this' we can only suggest

extensive further research on the properties of the carboxylation enzyme,

and on .its insolubilized and stabilized form.

Another difficulty with the reductive pentose phosphate cycle is its

large number of steps. The cycle itself contains 13 steps, although 10

enzymes are required, since 3 enzymes, aldolase, transketolase, and FDPase-

SDPase do two jobs each. 'Another 5 enzymes are required to reach starch

in nature.. If starch phosphorylase can be substituted for the four steps

between G1P and starch, this number would be reduced to two.

.As will be discussed in the engineering sections of this report,

there are formidable problems of separation of metabolites, coenzymes,

inorganic ions, etc., associated with the operation of a reactor repre-

senting any of these steps catalyzed by enzymes insolubilized on particles

in a fixed bed. If such. separations are to be carried out for each of the

15 to 20 possible enzymically-catalyzed steps (if we include regeneration

of ATP and NADPH), the' plant costs and energy requirements will'multiply

enormously. The energy cost could easily become one to two orders of mag-

nitude' greater than the chemical energy storage accomplished, .Even though

we are. assuming a supply of inexpensive energy (without which: this system 

could never become practical) waste of energy on. a ast scale probably will

not be tolerable..

In order to mini'nize. this waste.'-, of energy' due to separation processes,

It appears possible that most, if not all, of the enzymically-catalyzed '
a of th'nyIcalkCk l7e
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steps should be carried out in a common "sftirredttan]k' reactor. Suck a

system may approach om a nmacro scale. what the chloroplasts accomplish on

a micro scale. Thus, perhaps! the on[ly inputs to, the reactor could be CO2 ,

H
2

gas, and acetyl phosphate'.. The outputs could be acetate and phosphate

and .starch. A portion of the reactor fluid would be continuously filtered

and cycled'through starch-synthesizing columns. Starch would collect on

these columns, which would be removed from time to time for separation of

the starch from the column material.. We know that all of the components of

the reductive pentose cycle (enzymes, metabolites, etc.) are compatible.

We are not certain that the enzymes which would be involved in the transfer

of electrons from H2 to ferredoxin to NADP
+

are likewise compatible with

all the rest. There is some reason to hope that they would be, since cer-

tain algae can be adapted to carry out a dark reductive pentose phosphate

cycle using H
2

instead of light.

Certain other advantages may be cited for the system just?' described.

First, the presence of H2 gas in the system (and the exclusion of 02) would

probably ,increase the stability of most enzymes.

Second, the H2 atmosphere, anaerobic, would greatly reduce the proba-

bilifty'of serious bacteriological contamination. Very few species of

'bacteria live on H2 in the absence of 02. Fermentative bacteria would still'

be a threat, but their growth might be inhibited by the presence of acetate

and the' absence. of very muichI free sugar. Also, antibiotics could be used.

Third, the systemj'would be to some extent self regulating.. Three of

the enzymes catalyze more than one 'step, and these enzymes would tend to

catalyze ;the reaction for which there was the higher level of substrate',

taking into account the binding constants for the substrates'. By making
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certain enzymes rate=iimiiting ('as they are inthe chloroplasts) and moni-

toring and controlling the amiounts of these key. enzymes, a hight degree of

regulation could be achiFeved with relatively- few controls.'

Fourth, since all steps would take place in thesame reactor,, and

since only end products would be removed, all. reactions would eventually

go to ,completion. Therewould be no--need for any recycling

except in the final stage -of starch .synthesis.

The problems of running all steps in the same reactor are not insur-

mountable.,. Diffusion tmeuscould bereduced perhaps by having the enzymes

'for several' sequential steps attached to one' bead. For example', beads .

could be prepared with pentose phosphate iso'erase (Reaction 33), phosphor'

ketoepimerase (Reaction 32), phosphoribulokinase (Reaction 34), and ribu-

lose diphosphate carboxylase' (Reaction 15).

'In summary, I am recommending that the reductive pentose phosphate

cycle be 'used, with an input of H2, CO2, and acetyl phosphate, and that all ,,

steps be carried out in a Single multicomponent reactor. Such a reactor, ' 

would be a :kind of macrochloroplast, although without, the light-harvesting

apparatus., 

Eiergetics of the Reductive Pentose Phosphate Cycle and Alternate Cycles .

The ' tphysiological" standard free energy changes (AG ') .of the reactions : .

of'the reductive pentose phosphate cycle have been calculated by Bassham and

Krause (1969), .The standard conditions for these physiological free energy

changes are that all activities of solutes are at unity 'and all gases at'

1 atmosphere, but.] = 1'7. ' 

The actual concentrations of metabolic intermediate compounds in photo- "

synthesizzing Chlorella, pyrenidosa, and from these and the aG values, the

steady-state (AG ) values, in that system, were calculated. The. G
S

values
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would, of course, vary wijth the system, Howeyer, they are of some interest

in the present context'. There i's a l'imited'range of concentrations that is

optimnal' for' the enzymes, particularly in a multjienzyme system, where one

enzyme may be exposed to the reactants and products of another enzyme-

mediated reaction.: Thus it is likely that, if a multienzyme system is

employed in a reactor of the starch synthesis plant, concentrations within

an order of magnitude of those found in the natural system of green plant.

cells will be required.. The aGS values would consequently not. be too dif-.

ferent in the artificial system,

For example, inorganic phosphate, P., is commonly in the range of con-

centration of 1 mM in plant cells. This adds -4.2 Kcal to the AG values

of:.reactions in which Pi is liberated (.Reactions 23 and 30).'

Table I. shows the aGO' and aGS values for reactions of the reductive

and oxidative pentose phosphate'cycles. Table II 'shows 'free energies of' 

formation from the elements of metabolites. From an examination of Table I

several points are apparent:

1) AG values are generally close to zero for the majority of reactions,

indicating high reversibility.

S21 A few reactions have larger negative values. for AG ., In the

reductive cycle these are particularly the carboxylation.reaction.and the

FDPase-mediated reactions.

3) In order for the reductiQn, of PGA to triose phosphate to occur

(have a AGS with a negatiye. yalueL, the cqncentrations of 'reactants (ATP,

NADH, 'and PGA) must. be considerab.ly, higher than, tie. concen~trations of the.

products CGAld3P, N.DP%, Pi' and ADP), Hibweyer, the fact that there are

3 reactants and 4 products helps, since the concentrations of all metabolites

lie within an order of magnitude of 2 x '104 M.,
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' Table. I 'Free Energ? Changes foriReactiQns o f the Reductive and

'Qxidate' Pentose Pho sphate Cycles
S

Reaction Reactants, Products. ' ' G° G
No - ' Kcal Kcal

-x '\ 'x' 'k ~ N -~ ;* x - -',- - - - - -- . . . . . . . . . ... . . . ........ ' ......

15 RuDP, CO2 , H2 0 3-PGA -' 8.4 ' -9.8

16 ATP, 3,PGA ADP? PPGA
+4.3 .- 1.6

17 PPGA, NADPH G1dP ' NADP P

21 GAld3P DHAP -1.8 -0.2

.2.2 GAld3P, DHAP FDP 75.4 -0.4

23 FDP, H2 0 F6P; Pi -3.4 -6.5

24 F6P G6P -0.5 -0.3

25 G6P G1P +1.7 -

28 F6P, GAld3P E4P, Xu5P +1.5 -0.9

29. E4P, DHAP SDP -5.6 -0.2

30 SDP, H20 S7P, Pi -3.4 -7.1

31 S7P, GAld3P R5P, XuSP ' +0.1 : 1.4

32 Xu5P Ru5P +0.2 -0.1

33 R5P Ru5P +0.5 -0.1

34 Ru5P, ATP RuDP, ADP -5.2 -3.8

39,39a G6P, NADP 6-phosphogluconate,
NADPH ' 8.4 -11.4-

40 6vphosphoglvco- RuSP, NADPH, CO2
nate, NADP +1.6. 2.1

From.Bassham & Krause, 1969.'
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Table II., 'P'fiological F.ee Energies $Qf Frmnation from the Elements

iof 'Metabolites and Related Compounids'

RSiibstance

2
Pi i-H2 0)

a-D-glucose

2G6P

Gl1P

-2
F6P-2

FDP

2

GAld3P- 2

Glycerol

a-glycerol P-2

333-PGA
'

2 PGA
'
3

pyruvate

E4P 2

-2S7P

SDP

R5P 2

-. 2RuSP' 

-4RuDp 4

Xu5PZ

6:phosphogluconate

CO2

H O2

Kcal . '
. . . . . . . . . (! .i , .a) . . . . ..

P

-219.2

P-215,.9

.P-214.2

P-215.4

2P-212.O0

P-104.3

P-,102..5

-116.8

P-114.4

P-157.5

P-156.1

-113.4

P-139.1

P-252..5

2P-249.1

P-177.6

P-177.,O,

2[-,,174.6

P ,177.3

P-2-67..4

--94.,3

56.7

..
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.. . .

. .
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. . . .
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The high degree. of reversibility of many .Steps may well be a strong

argument iin favor of a multienzyme teactor, For example, if.all enzymes

of the reductive pentose phosphate cycle- were present in. a single reactor,

the large negative 4GS of the carboxylation reaction ( -10 Kcal) would

drive carbon into the reaction pathway. Subsequent reversibility would

not matter, since carbon would be removed from the system in the starch-

forming reaction, which also is estimated to have a substantial negative

free energy change (assuming the ADPG system, Reactions 26 and 27, is used!).

If a single enzyme, fixed-bed column were used for a highly reversible

step, it is clear that considerable unreacted material would come out of

the bottom of the column, and would have to be separated from the reactants,

coenzymes,. etc. Separation problems are severe in terms of plant size,

energy consumption, and cost, and must be minimized wherever possible.

This is another reason for seriously considering a single, multienzyme

system suggested earlier, in which the only inputs are CO2, H2, and acetyl

phosphate., The only outputs would be acetate, phosphate, and. starch. The

starch might be removed on a side-loop column, where it could be collected

in insoluble form. The column (one of many) could be removed, and the

starch. washed off (perhaps following partial enzymic digestion). The acetate 

and phosphate, having lower molecular weights than other metabolites and

coenzymes, would be removed in other loops employing a battery of counter-

current selective diffusion devices, as described in. the engineering reports.

' While the-example in.the engineering report.describes the separation.

of different me.tabolites, it is hoped that the principle could be used for

separating acetate and phosphate from other.metaboliteS., It is clear,

however, that considerable improvement in the state of the art of selective

diffusion membranes will be required before this hope becomes a reality.
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Assuming that 'the 1w cost energy postulated as the basis of this

'S~tudy'i'~s adciieyed, t ]he 'shingle post seriOu$ ,obstacle 't0 success appears to

'be 'tte. separat'i'proBIems. We. might summarize this opinion by saying that

the. use of insolubiized enzymes appears to offer the promise of duplica-

ting 'in'vivo catalysis, but membrane technology is much further at the

present time from duplicating in vivo selective transport. 'Both of these

properties of living cells will have to be copied in'some' way if we are to

reproduce the synthetic process of photosynthesis.
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INTRODUCTI-ON

One.of the crlitexia in. sel'ecting the' Optinmal pathway for the synthesis

of starch from C02, water and energy, had to he. the' number' and characteristics

of the enzymes involved. In turn? this assumes the availability of infor-

mation on these enzymes.. The present section.summarizes the literature

available on the enzymes participating in the reductive pentose phosphate

cycle-.-the pathway which was selected as our first choice. Perhaps after

scanning through this information the reader might wonder why we selected

this particular pathway.. Indeed, there are very large gaps in our know-

ledge of the enzymes. One can only reply thatthe problems and lack of

information appeared even greater in the other alternatives considered.

-Many examples of such.problem areas were given in previous sections of the

report.

The enzymes in the following survey are arranged alphabetically and

are also numbered according to the number given in previous sections to the

reaction they catalyze.. Although we have tried to be fairly complete in

the bibliography, the summaries themselves concentrate mainly on the data

which we felt would be needed for a systems design. These are principally

data on the enzyme at the molecular level such as molecular weights,

presence of cofactors, pH optima, kinetic parameters, data on inhibitors,

etc. 'Any available information on stability and primary structure was at

least referred to, as a basis for possible future. research on the insolubili.-

·zation, and stabb.liza~tion of enzymes..

What are some of the overall conclusions, emerging from this survey of

enzymes? It is clear that muckhwork is still.needed on the enzymes them-

selves., In a few cases' Cphosphoglycerate kinase, ribulose phosphate
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epimerase, phosphoriDulokinase) it will be seen that few or no highly

purified preparations of the enzyme have as yet been: described.. In other

cases Cglyceraldehyde 3-phosphate dehydrogenase, transketolase, triose

phosphate isomerase, aldolase, fructose diphosphatase) the enzymes are

well known, but they have been studied mostly from the point of view of

the mammalian biochemist, i.Ie., as degradative enzymes participating in

such metabolic pathways as glycolysis and oxidative pentose phosphate.

These enzymes were, generally speaking, purified from yeast or mammalian

tissues rather than from plants, and in many cases there are few or no

available data for the reactions performed in the direction of the syn-

thetic reductive pentose phosphate cycle.

We would have liked to have more data on the plant enzymes, as these

might be more useful in the starch synthesis for two main reasons:

1) First, plants would be a cheaper_;source of enzyme and would contain

-all the enzymes needed for the pathway of interest. (Two of the enzymes

In. the cycle,:·.ribulose diphosphate carboxylase and phosphoribulokinase,

are uhique to the reductive pentose phosphate cycle.)

2) Secondly, we have no information on the in vitro compatibility of

the various enzymes needed, but we know at least that all the enzymes are

able to function together in their natural environment--the chloroplast.

It .likely would be easier to find conditions of. pH, ionic strength, etc..

suitable for all the enzymes involved, or at least for a majority of them,

if they were purified from a common. source.. Thi~s would be important for a

design suck as its proposed in the section on pathway- selection, in which a

number of reactions are performed in. a common reactor.. It must be stressed,

however, that it lsiinpossilbe to predict on the basis of available data
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whether this is a realistic approach to the problem fromn a chemical point

of view.' Not only ismthe information lacking on the 'ir vitro compatibility

·.of various, sbiuble enzymes, but wwe also have to contend with the fact that-- 

the properties of the' enzymes might change considerably during the process

of insolubilization., Virtually no work. is.available on the insolubiliza-

tion of the particular .,enzymes' needed. Therefore, at the, present time,

,any design would'have to be based on'whatever information is available on

the soluble enzymes, and this will.almost certainly introduce a large degree

of uncertainty..

This section also includes a summary of the available information on

enzyme insolubilization and stabilization. The' work that has been done on

other enzymes might at least serve to make some reasonable predictions

about'such required' parameters as the amount of protein bound per unit of

support and the proportion of protein remaining enzymatically active after

binding.

In conclusion, it can be stated that much research. is still- needed in

the following areas:''

'1) Purification of all the' enzymes involved using green plants as::a

common source.

2) Characterization of the enzymes at the molecular level, especially

from the point of view of the reactions as they¥ occur inthe reductive

pentose phosphate cycle., This involves in. a number of cases the developing

of new assay procedureseasuriTng enzyme activity in the direction needed..

3)_ InsolubilizatiQnr and stabiIiatiQn. of the enzymes., -elucidation of

the properties of the derivatives and their compatibility., This area is

certainly the biggest question mark at the present time. 

.;~·-3
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Survey of Enzymes

n : I
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ALDOLASE

QReactions. 22., 29)

"Aldolase" is-a generic name for a number of enzymes catalyzing the

aldol cleavage/condensation reactions involving dihydroxyacetone phosphate

and a variety of aldehydes. Among these reactions, the most important

ones, are:
carbonreduction cycle 

DHAP + DT.glyceraldehyde--3'=-P . : - FDP
glycolysis

DHAP + D-glyceraldehyde >' F-1-P
liver fr.uctose metabolism

'carbron reduction cycle,
DHAP + D-erythrose-4-P . SDP

A trans configuration at positions 3 and 4 is required.

Aldolases are present and have been studied in representatives from

all phyla.. A partial bibliography on the enzyme comprising mainly the more

recent work is compiled at the end of this section. It includes several

reviews dealing with various particular aspects of the enzyme: Rutter (1961)

Rutter (1964), Morse and Horecker ('1968),,Horecker (1971). In spite of,

the wealth of available studies, the data most necessary for our purpose

are very scarce or apparently not available. 'This is because aldolase has

been studied mostly as the glycdlytic enzyme, the assays being performed

in the direction of FDP cleavage. Thus data on FDP synthesis are seldom

given and data on SDP formationdo not appear to be available.

Aldolases-are classified in.two large, groups (,,utter, 1964): class I:

and class I'I., These are suffi.ciently, different from eaci. other to justify

the. assumptibn that they are analogous Crather than homologous) proteins.
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'I.. Class I aldolases

The prototype for, this' class is the mammalian. muscle aldolase. The'

group includes a.number of mammammlian al'dolase. isobzymes: from different

organs, enzymes- from various other animal phyla4,.' as well as the enzyme
i gans, enzymes. {' i. : ,''

from plants. 

The distinguishing features of this class are; a molecular weight

of 140,00.0.-. 160,000, no.inhibition by metal chelators, no bound metal ion,

no activation by monovalent ions, and broad pH optima. Data on three,

representatives of this'class are compiled in Table' I.' 

Irt should be noted from the kinetic parameters of the two mammalian

isozymes that.aldolase B (liver) appears to be adapted for fructose metabo-

lism and gluconeogenesis, i.e. for FDP synthesis. Therefore, of the two

mammalian aldolases described, aldolase B. would be more suitable for the

sugar synthesis process. Unfortunately; the kinetic parameters for the

spinach enzyme were studied in the directiohnof cleavage.-both of FDP and 

of SDP, even though these are the inverse of the postulated. photosynthetic

reactions., Moreover, data for the reaction of.SDP synthesis from E-4-P .'

and DHIAP seem to be. unavailable for any of the enzymes studied ' .

II. Class II aldolases ' ' , 

This.gr6up is found in fungi and bacteria- (including the, blue-green 

"algae") and'is distinguished by' a molecular weight of about 70,000;, the , ;

presence of a bound divalent metal ion, complete' inhibition.by EDTA 

(reversible by addition of divalent metal ion), actiVation by iK, and

sharper pH optima, In contrast to class I: enzymes, class. IIr aldolases are i.

unaffected by,; carb.oxypeptidase .and are. inhibited by reagents. which attack.

-SH groups. These' differences suggest the existence of two' different:

mechanisms of action and there have been a large number of studies addressing
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themselves to the question of the mechanism of the aldolase' reac'tion :and

the differences between the two groups. CFor a reviaew see Morse and

Horecker, 1968). .

For the yeast enzyme Rutter (19.61) gives the following kinetic con- 

stants:

Km CDPL =3 9 x 10 4M; 'V 8300

K '(DHAP and GAP) 2 x 10'3M .,

An enzyme of the class II: type that might deserve special mention is

that from the thermophilic bacteria (Barhes, et al., 1970;.Sugimoto and

Nosoh., 1971) which is.both active and, stable at high temperatures.''

The following thermodynamic constants for the aldolase reaction were

compiled by Rutter ('1961):'

aG° ([ cal/mol) AH

°

(cal/mol) ASO (cal/deg.mo) ' ..

FDP.-. DHAP + GAP . 5580 13,100 24

Keq = 8.1 x 10 5 M (30 )

F-1-P -- ) DHAP + glyceraldehyde 7880 15,000 23

Recently, a number of studies have addressed themselves to the. 

elucidation of the primary structure of aldolases from various organisms,

especially around the active center., (See for example,' Horecker, 1971; 

Guha et al., 1971; .Ting et al., 1971a and 1971b; Lai et al., 1971; Lai;''

and Oshima, 1971; Jack and'Harris, 1971).. .

Rabbit muscie 'aldolase has been',insolubilized by Bernfeld et al. : '' 

(1968) by imbedding it in polyacrylamide gel.. In this work.. only'about one' 

fifth of the protein fixed remained enzymnatically actiye and the authors

suggested that only, the surface-bound protein. retained .activity. .

rI

I I
' 

'" '

r '

f .
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.. , , -. FRUCTOSE-i,,6-.DIPHOSPATASE (HEXOSEDIpHOSPHATASE) . ,,' ;,,.' .' '''

'-Fructose-1,6-.diphosphate'l -phosphohydrolase; E..3..3.1'.,3'.l1'.V ;§1 , , : ,, , , ,,, , j , , , ,:: , ,: ,: :::. ) | ,, ' ;, : ':,, . .,
·I . *,. ;'i,., · : "

':-:...,, . -sedheptulose l,7-diphosphate +. I'O - D-seduhe 'tuose 7 P , '. +,7

i f '~~~~~~~~~~~~~~~~~~~~~~ ~' .. , .... ; , . , , 

0',' ,'; 'carbon riaeducinyl'a .ctiois ·2.3tobe, ; 30.) l., ,

: ' '',.these'.systems and, 'as such, has been extensively studiedn'i the few ,' 

years.' To~ sumarizeits properties in just a wfe pages is therefore a e 4

Y',:: =.D-sructs e 6-P " -" I' ..:

difficult task. aPontremoli and'Horecker ,have re4^entTy 4 . ,

.,,', ' written two detaled reviews.on'FDPase,'with,numerous references and' the "

':' · , ,r

,(Notes:en;- This. semtion. itnchuaes c',,n thent's ;'Seduheptul s ' 1puls7-dpiop""

' ' , since that time. This morerecent work will probably requre a re- evalua ' '.,,

· r .s ~ ! , ,, ,!*. , t' , , . k , , I " ' , i

' ,',,,. tion of much o'f,,,the lder sltudiesj'which were 'done on rthe so-called "aka- a

,,line" FDPase. .e In the cours'e of older'purification procedures, (see reviews 4

' cited), FDPase, .is' cey. enzyme in bothecrude extract was highly and the at ,eutralpH., ',

. , ,fwas extracted in' a, form wi th maxihmal,:activity'above pH 9.,:0 tnti'.reety . , ,' ',·.

* 4, ' ' . ' 4, , ' 4lk ,ne 'f r' 4 :,,,these' sll ejms and, as suc, u a tudies were per stormed on.ths ';,':, 

.1:~ e ,e ... .'- . .. , _. ,..- I.. 1' ng'n..w pif .ica.

respectively, whose.pi tsopti es nclQsely resembled, thQseo a ther.:.ude ,extra.cts,".

d whficut taskcoud.: Ptheremo ire,. represencite ie natiYe' : . e ' , h enzymes'

' , ' '"'' , i , h; ' "''sphatase , ' ' -; ' ' * ; '' "l;" h', " M '" " 

4 i ; ' ' . 4 4 ; '
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With regard to its specificity, FDPase from mammalian. sources is

almost equally active with SDP as substrate and the two activities appear

to be inseparable.. In contrast, some organisms have two distinct proteins

performing the hydrolyses of FDP and SDP, respectively. It would probably

be of advantage for the purpose of our project to use an enzyme which

can catalyze both reactions.

I. Manmmalian FDPases

A. Liver FDPase

1) "Alkaline" - see reviews by Pontremoli and Horecker (1970 and

1971)..

Specific activity of crystalline preparation = 19.5 micromole

FDP/min.. mg protein at room temperature, pH' 9.1, 1 mM MnC1
2
.

Requires divalent cation: Mn 2 or Mg+ 2 .

W'ith M +2 the enzyme has little or no activity at neutral pH

and maximum activity at pH-9.0-9.2. With Mg 2 the pH optimum is

strongly influenced by the concentration of metal and the presence

of chelating agents, e.g. imidazole.

The enzyme hydrolyzes'both FDP and SDP, the latter at about 70%

of the rate for FDP. The affinity for SDP is, however., considerably

lower than that for FDP. A number of other mono- and diphosphates

tested are inactive. Some typical kinetic constants, are:

Rabbit liver: Km(FDP) = 4.3 x 106 M (pH=9.1, Mg+2)

= less than 10 -6M CpH=7.'S, Mg 2

2.6 x lo M (pH9.1 Mn 2)

= less' than. 10
'
M CpHI=7..5, Mn+ 

(Pontremoli., 1966).,
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i .

Rat liver: Km(FDP) = 1.2 x 10 5 (pl-=9.0)

KmCSDP) = 3 x 10. (jpH=9.0Q)

C(Bonsignore et al., 19'63)..

At higher FDP concentrations, the substrate becomes inhibitory.

Thus-, at 10-
'

3 M FDP the rate of hydrolysis is about 50% of the

optimum rate, This substrate inhibition is observed only in the

neutral pH- range.

FDPases are typically inhibited by AMP, a phenomenon which is

assumed to play a role in the physiological regulation of gluco-

neogenesis: the ratio of AMP/ATP is thought to regulate the rela-

tive rate of glycolysis and gluconeogenesis via their effect on

phosphofructokinase and FDPase, respectively. Again, the inhibi-

tion by AMP is apparent mostly in the neutral pH range.

Ki (AMP) Crat liver) = 1.1 x 10- 4 at pH 7.3.

AMP is a noncompetitive inhibitor and is believed to act at

an allosteric site. It has been shown for the liver enzyme that

the lowered inhibitory effect above pH 9.0 is not due to a lower

affinity of the enzyme for the inhibitor. The enzyme can be de-

sensitized to the AMP inhibitor by a number of treatments, without

loss of catalytic activity. These very interesting studies,

involving selective modification of the protein by various reagents,

.are reviewed by Pontremoli and'Horecker (1970 and 1971) and should

'be useful in future insolubilization and stabilization studies.

Also of interest should be the studies pertaining to activation of

the enzyme by disulfide reagents; these increase the activity' of

the enzyme in the neutral pHi range. Thus-, in the presence' of -

homocystine the specific activity, at pH2 7.5 is 40 units/mg protein,

.I

.1d , I
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or .twice that at alkaline pH, under normal conditions .,

Wifth regard to stability;, Pontremoli (1966) state's that the

enzyme can be.s;toredd.for months: in the cold without loss: of

activity.,

The rabbit liver "alkaline"' enzyme'has been estimated to have ''

a molecular weight of.,about 130.,00,0 and is made out of. a total of

four subunits with two types of polypeptide chains of molecular

weights about 29,000 and 36,0' respectively. 'In support of the' 

.physical dissociatfion,experiments, various ligands have: been ' .

found to have four binding sites per molecule of protein.

2) 'eutral! ' '' ,,; ,: '

Traniello et al..C0971lb) and Byrne et al., (1971) have,succeeded

in purifying from rabbit and bovine liver, respectively, FDPases

with optimal activity at neufral pH, probably representing the' ':

native forms of the enzymes. In view of these studies, it now

appears that previous purification procedures led to a proteolytic

modification of. the prote"in, which was. responsible for the shift. : '

' .'F from a neutral pH optimum in the crude extract to the alkaline.

optimum in thepure preparation.

'The "neutral" rabbit liver FDPase (Traniello et al., 1971) has.' 

a molecular weight of 143,000 (vs.- 130',000 for the,'!alkaline") ,

and.a' pH optimum of 7.0'- 7.5 with both magnesium and manganese

ions., '

Km (FDP) = 2 x 10,6 M (pH=7,5, with Mg2 ., .

·t2 .,
= 5x 10-5M (pH-.9.2, .th:jg ).

Specifiic activity = 14'.:6 micromole.FDP/min.mg protein: .: ' '

,Mg 2, pH=7..5)

. I

.i ., ~ il '', 1? . .1

. .
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0...4 mM.FDP':ihilbits the enzyme activily' about' 50%. This . '- '; ..

.,,.effect is: observed.,only, in., the neutral-pH. r.ange,.,

The cation requirement for "neut-ral' FDPase is 12 mM Mg
+2

or 0..10..2 mM Mn. 2 At higher concentrations bo.th. cations become

inhibitory by 20-30%..

Neutral FDPase is more sensitive to inhibition by AMP than

alkaline FDPase., 10 4 M AMP is totally inhibitory.

In the case of the bovine hepatic FDPase,' Byrne et al. (1971)

succeeded in keeping the ratio of activities at pH 6..5.and 9.0

nearly constant thiroughout 'the purification procedure; They' ob- 

tained, a.preparation, homogenous by several criteria, 'of pecific' . ...

. activity 200 ."units"/mg protein at pH=6...5 and' 130, "Uits"/mg ';pro-

tein at pH=9.,O, where a "unit" is defined as the amount of enzyme.

catalyzing the liberation of 1.0 micromole P' in 30 minutes at,370° .

The molecular weight of,this protein was about 130,000. "

B. Kidney FDPase ,

May be the 'same protein as the liver FDPase, (see Pontremoli and

'Horecker, 1971).,

C., Muscle FDPase (rabbit)

Acts on both FDP and SDP. Is very sensitive to AMP inhibition. 

Thus, 1.3 x 10:7 M AlMp inhibits the activity by 50% at pH,.7'.5. SDP ,

hydrolysis is'ten times less' sensitive to inhibition by AMP. , ".",,: ,

,The maximum rate of FDP hydrolysis at pHi 7.,5 is 2.,5 x'.l0 ,M. ' 4 -.

Higher concentrations of FDP are inhibitory'., The affinity is lower

at pH 9.2.. For SDP Km = 0..1 mM at pH: 7..5

= 1 mM at pH 9.3 ' ' 

'The molecular weight is 133,000. . ''

< ' g \ . j .~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I I
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II . FDPase 'frdomCandida utilis

This is- an example of a specific FDPase, it does not catalyze the'

hydrolysis of SDP-, The latter function is performed by a separate enzyme

whose properties will be discussed below-.

A new purifi'cation procedure for the Candida FDPase was recently

described by Trani ello 'et al. (1971 a).- The properties of this' preparation'

are summarized below. An older preparation (Rosen et al-., 1966) appears

to have fairly similar characteristics.

Molecular weight = 130,000. Tetrametr. ' 

Specific activity = 73 micromoles F6P;formed/min. mg protein 

iMg+2 , 22°, pH-= ?).,

Maximum activity of crude extracts at pH 8.3 - 8.6. 

Maximum activity:of purified enzyme at pH 8.6 r 8.8. 

EDTA increases activity but does not change pH profile., 

Km ('FDP) = 0.8 x 10 -
5 M at either pH 7.5 of 9.2 (Mg 2 'and 0.1 mM EDTA3).

Substrate concentrations above 0.1 mM are inhibitory.

Inhibited by AMP and activated by disulfide reagents.

The enzyme solution is stable for several months at -200.

II'I SDPase from Candida utilis

!Craniello et al., 1971 a). ..

Molecular weight = 75,000. Two subunits.

Specific activity = 11.5 micromoles Pi released/min.mg protein 

(pH 6.0, 370-).

pH optimum = 6.0 (both in crude extract and purified preparation).

K
m

CSDP) = 1 mM; higher concentrations of SDP not inhib.itory-.

AMP not inhibitory at 3 mM.. Metal ion not reqiired.> Not modified 
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by' disulfide reagents.. Inactive wi'th a number of other phosphates. '" !'

tested,' including FDP.

IV., FDPasses from, Other Microorganisms.. . .

A number of other FDPases are reviewed by Ponhtremoli and Horecker 

(1971). lMore recently, a report by Yoshida and Oshima (1971) described. 'i' 

thepartial purification of the enzyme from a ".thermophilic ,bacterium. .

This enzyme maintains- its, allosteric properties at 700 and is otherwise

similar to other FDPases with alkaline pH optimum,

V. Plant FDPases' .. .

Plants appear to have both an "alkaline" and a t'neutral'' FDPase (see'

review by Pontremoli and Horecker, 1971) and the "alkaline" enzyme is

thought to be the one participating' in photosynthesis.. In view, however.,

of the accumulating evidence 'indicative of the dependence of the pH

optimum of FDPase on extraction conditions, it is hard to evaluate what

the real situation' might'be .in the' living plant, especially as PreisS et

al. (1967) have shown that the pH optimum of the so-called "alkaline"

enzyme from spinach leaves is strongly dependent on Mg
+
2 concentration.

Thus, at 5 mM MgC12, the pH optimum was about 8.5 and negligible activity

was observed at pH 7.0,but when' the MgC12 concentration'was raised to
r . .. ,

40 mM, the pH optimum shifted to 7.5 and 40% of.this activity was found..; 

even at pH 7.0.

'As an example~of a plant enzyme, the FDPase from Euglena'gracilis. : ' '.

(App, 1966) has a pH optimum of 8.2.5 Km(FDP) = 3 x 4 M (at a Mg 2/FDP,,

ratio of 2.0-.25; Specific activity= 72. -.128 micromole Pi liberated/min, g

protein. I:t can be stored for months, at ,2.0., pH: 4.95, cirate buff4er'.;9 , ;

,!, .. , , ., , , .. . . :



The quest

thesis are pE

.....~~~. .- ' 73 - & . .. I·.·.,. · i·
·~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~:

.' '. ·: '... · '; t.
L~~~~~~~~~~~~~~'.

9~

tion· of whether the FDPase and SDPase functions in~photosyn-..·

erfo~rmed by,· the same protein. appears to be still unresolved,.'
"' ·~~~~~~~~~~~~~~~~~~~'

r · I·~ ~~~~ ~~~~~~~~~ . ." .

/,I

· -

'~~~~~~~~~~~~~~~~~~~~~~~. · ~¥

"I ,· 



- 74 -

BIBLIOGRAPHY

1. ..A.A. App. U''Fructose 1,6-diphosphatase., III.. Euglena gracilis", in
Methods in Enzymology- (S.P, Colowick and N.O. Kaplan, Eds.), vol. IX,
p.. 636, Academic Press, New York and London, 1966.,

2. S.J. Benkovic, J.J. Kleinschuster, M.M. deMaine and"I.J. Siewers,
"On the Mechanism of Action of Fructose 1,6-Diphosphatase. Inhibition;
by Structural Analogs' of Fructose 1,6-Diphosphate"!, Biochemistry 10,
4881 (1971). -

3. A. Bonsignore, G. Mangiarotti, M.A. Mangiarotti,.A. de Flora and
S. Pontremoli. J. Biol. Chem. 238, 3151 '(1963).

4. W.L. ,Byrne, G.T. Rajagopalan, L.D. Griffin, E.H. Ellis, T.M. Harris,
P. Hochachka, L. Reid and A.M. Geller. "Bovine Hepatic Fructose
1,6-Diphosphatase: Purification and Properties"', Arch. Biochem.
Biophys. 146, 118 (1971)..

5. H.J. Cohen, T.M. Harris, A.M. Geller and W.L. Byrne. "Bovine Hepatic
Fructose 1,6-Diphosphatase: B-Glycerophosphate Hydrolysis - Evidence'
for a Shared Active Site", Arch. Biochem. Biophys. 146, 144 (1971).

6. E. Grazi, A. Acorsi and S. Ponitremoli. "Fructose .1,6-Diphosphatase
from Rabbit Liver. XIV. The Sequential Binding of Substrate. and
Cation to the Enzyme in the Catalytic Process", J: Biol. Chem. 246,
6651 (1971). 

.7. K. Nakashima and: B.L. 'Horecker. ,'TMdification of the Catalytic
Properties of Rabbit Liver Fructose Diphosphatase by a Particulate
Fraction from Liver", Arch. Biochem. Biophys. 146, 153 (1971). .

,8. S. Pontremoli. "Fructose-1,6-diph6sphatase. I. Rabbit Liver
(Crystalline)", in Methods in Enzymology (S.P. Colowick and N.O.
Kaplan, Eds.).,.vol<. IX,, p. '6;25, Academic Press, New York and London,
1966-, :: .

9. S. Pontremoli and B.L. Horecker. "Fructose 1,6-Diphosphatase from
Rabbit Liver", in Current Topics in Cellular Regulation' (B.L.. Horecker
and E.R. Stadtman, Eds.), vol. 2, p: 173, Academic Press:, New'York
and London, 1970.

10. S. Pontremoli and B.L. Horecker., "'Fructose-1,6-Diphosphatases", in
The Enzymes P.,D., Boyer, Ed,), third edition; vol. IV, p. 611,':'
Academic Press, New YQrk and London, 1971. ,

11. J., Prei-ss, M.,L., Biggs and E'l Greenberg., 'The Effect of Magnesium Ion 
Concentration on. the pHi. Optimum of the Spinach Leaf Alkaline. Fructose
Diphospthatase", J', Biol., Chem. '242, 2292_ (19671...

:1 r 
I~ ~~~~~~~~~~ I Ilo I I

, .1 ,

I ,

. . .. I

';

I ,,

.. : .~

, · . . i~~

. ....

.I ..

......

.,,, .;

.. · .

II

. .

, ·

! ' " ~
'·~ ' '

, 

A ., .;

* , I +f 

.; ....I

, , I 
: . .. 



75 -

12. O.M. Rosen, S.M. Rosen and B.L. Hore6ker. "Fructose-1 ;'6-Diphosphatase.,
II. Candida 'utilis", in Methods in' Enzymology (S.P.;, Colowick and N.O.
Kaplan, Eds3,) vol. IX, p., 632, Academic Press,New York. and London,;
1966 :

1.3. K'. Taketa, M.G. Sarngadharan, At. Watanabe, H., Aoe and B.M. Pogell'
"'Reversible Inactivation of Rabbit Liver Fructose l,6.Diphosphatase'
by Adenosine Triphosphate and Adenosine Diphosphatel', J. Biol. Chem.
246, 5676 (1971).-

14. S. Traniello, M. Calcagno and S. Pontremoli. "Fructose .1,6-Diphos-
phatase and Sedulose 1,,7-Diphosphatase from Candida utilis: Purifica-
tion and Properties'', Arch. Biochem.. Biophys., 146, 603, (.-971a).

15.. S. Traniello, S. Pontremoli, Y. Tashima and B.L., Horecker. "Fructose
1,6-Diphosphatase from Liver.' Isolati6n of the Native Form with
Optimal Activity at Neutral pH", Arch., Biochem. Biophys. 146, 161
(1971b).

16. M, Yoshida and T.. OshIima. 'eThe Thermostable Allosteric Nature of
Fructose 1,6-Diphosphatase from an Extreme Thermophiletu, Biochem.
Biophys. Res. Commun.. '45j, 495 (1971. ,

A. -' -, .
I , . ' , . .

I. 

. ..

. .: , ' 

.r l

.·

.·· . ,,

. ,, . · . .

... . ~~~~~~~~~~~~~~~..

.~~ ~ ~~~~~~~~~~~~~~~~~~~~ .

.. · , . .:. .

,,,, f :' '' ' . .~~~~~~~· ':'
. . . . .~~~~~~~~~~~~~~~~~·~·

i;·' \ ' l

....

, , ' ; ' ' ' '' · i;¢s

, ' , t ' ' ; ' ,, ' !, s :··; ,,,

' , I : ' ' .: I . I' .,' I;'" '' i ',

,:. . ~·; '

. . I I
I, ,, ., 1

:: ,

li . ':. I. ,

Ej ' I .. 

.. , . 1 .

,. ' ' . '0~~~~·I·



76 -

GLYCERALDEHYDE-3-PHOSPHATE DEHY)DROGENASE.

,(Reaction 17)_

. .I.The Glycoltic Enzyme .

Glyceraldeiydes,3~phosphate. dehydrogenase (GPD) has been extensively

studied but mostly as the enzyme participating in glycolysis; D glyceral-

dehyde-.37phosphate; NAD oxidoreductase (phosphorylating), E.C., 1.2.1.12.

This enzyme catalyzes> the reaction.:

D-glyceralde hyde-3-phosphate +Pi +, NAD
+
- 1,3-diphospho-D-glyceric .,,' 

acid + NADH + H

or, if phosphate is replaced by arsenate;

+r~'en~te' ' ' -'" 
.D'-glyceraldehyde-3-phosphate + NAD arsenate) 3-phosphoglyceric acid

* .+ NADH + H+,

A comprehensive review about. this enzyme is that' of Velick.'.and Fur-.

fine (1963).. The following is a brief summary of the available data:

GPD from a number of sources has been obtained in crystalline form.

Typical preparative procedures are described by Allison (1966). I

Molecular weight estimates for the enzyme from various sources are in

the range of 120,000 to 140,000.

Theenzyme is relatively unstable in solution but quite stable if

stored as crystals in the ammonium sulfate mother liquor, in the' cold.

The stability is improved by the presence of EDTA, ,'-mercaptoethanol" and. ': , '

by the addition of NAD (even though the crystals contain. already V .yariable.

amounts of strongly complexed NAD)_,

The kinetic constants are difficult. to obtain because of their low

values and because of pr6duct 'inhibition.. For the "reyerse' t reaction,

i.,e, for the' reduction of P-3PGA, Furfine and Velick 1965) .determined the

::

I~~~~~~~~~~~~~~~i

,.,

.
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following values, at pH 7.,4, 269, for'the enzyme from rabbit muscle: ,.

-6 ' ' Substratesi NADH T'- 3,3 x 10 , M '

P-3PGA -- ;=K. O.8 x 10 M

-4Inhibitors,; NAD ..- , = 1.,0 x 10'4 M

GAld3P ---- Ki. 6.,0 x 108M 

Vma
x

for the reaction in the direction of reduction, at pH = 7.4 is

given as '14,900 min 1 (presuiably meaning mbles of P-3PGA conver'ted per. ".,

mole enzyme per minute). The'same authors calculate Vmax in the oxidationmax

reaction to be 22,000 mrin , at pH 8.6. Hcwever, Allison and Kaplan (1964)

give the turnover number for their crystalline enzymes from a variety of

sources, at pH 8.,5, as 2300 moles NAD reduced per mole enzyme per min.

The source of the discrepancy between these numbers is not clear. 

II. The Plant.Enzymes

In the green plant, the enzyme participating in the photosynthetic ;. ' '

sequence is assumed to catalyze the following reaction: 

1,3-Diphosphoglyceric acid + NADPH + H = D-glyceraldehyde-3-P +

NADP + P.

This is the enzyme: D-glyceraldehyde-3-phosphate: NADP oxidoreductase

(phosphorylating)_ - E.C. 1.2.1.13. '

Green plants also possess'an NAD-linked activity.; present in nonphoto- ' '

synthetic tissues. ,'Also, according' to some researchers. Csee Hageman 'and ;"

Arnon, 19.551 a second NAD-li-nked activity exists in photosynthetic tissues, , 

More recent reports, however, indicate that the NAD- ,and NADP-linked

activities of green tissues: may not represent two distinct proteins. CSee

Schulman and Gibbs, 1968; Melandri et'al., 19681.,

] d ~~~. \|a 
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Schulman and Gibbs (1968) purified the NAD-linked actiyity of pea

seeds and the NAD- and NADP-linked activities of pea shoots and found the '

following kinetic constants, in the di'rection of.reductioon of P-3PGA, at

pH: 8.5:

Pea seed (NAD-linked): P-.3PGA

NADH

Pea shoot (NAD-linked): P-3PGA --

NADH

Pea shoot (NADP-,linked): P-3PGA ----

NADPH

Km

m

K

m

K
m

K

-6

= 3.2 x 10 6 M

= 1.57 x 1O6 M

= 8.0 x 10-6 M

= 1.14 x 10-6 M

= 4.0 x 10-6 M

The V, values are not given.

The low' Michaelis constants are quite similar to those of the NAD-

linked muscle enzymes. Also, in-.accordance to the finding in the muscle

enzyme, the NADP '-enzyme contains strongly bound nucleotide.. Sedoheptulose'-

7-phosphate and sedoheptulose 1,7-diphosphate were found to inhibit com-

petitively the oxidation of G-3-P by both plant enzymes. The inhibition

constants for sedulose diphosphate are:

Pea seed (NAD-linked): K. = '2.08 mM
1

Pea shoot (NAD-linked): K. = 1.31 mM

Pea shoot (NADP-linked): Ki = 0.6 mM

.In.a recent abstract, McGowan and'Gibbs (1971) state that the mole-

cular weight of the chloroplast enzyme is 150,000.,

Since the various properties (size, kinetic constants) of the glyco-

lytic (NAD-liinkedl 'and photQs ynthetic yCprbably' NADP-,linked) enzymes are

very simlar, it appears' that.either would be. equally, useful for an induS -

trial process, unless one enzyme proves; to be more easily. insolubilized

and stabilized than another.. However, if the system is- to use a ferredoxin-

.I.
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linlced process for regeneration bf re.duced pyridine nucleoti"de, as 'is done

in thie chloroplas~t, then the use. of a NADP enzyme w.ould'be advantageous,

since the K
m

for ferred6xin reductase iS 400 times. lower for NADP:than for '

NAD (Shin and Arnon, 1965y .
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PHOSPHOGLYCERATE KINASE , 

CATP: 3'-phospho',D ,glycerate l-PhoSphotransferase; E.C.C; 2..7,2 ..31

CReaction. 161) 

ATP + 3-phospho-D-glycerate' - ADP + 1,3-diphospho'.D-glyceric acid

3. , 3 PGA 3 PGA' ..

In. spite of the importance of phosphoglycerate kinase (PGK) in both

glycolysis/fermentation and photosynthesis, not too muchk is known about

theenzyme at the molecular level. Only the enzyme from yeast appears to .

have been obtamined'in highiy purified, crystalline form (BUcher, 1955) .'

Axelrod and Bandurski (1953) and Rao and Oesper (1961) have described

partial purification of tht enzyme from pea seeads and rabbit ,muscle, '

respectively. .

Larsson-Raznikiewicz' and Malmstrdm. (l961') estimated
~
the molecular' . :. ' f +'.',

weight of the yeast enzyme to be 34,000. The enzyme appears to be fairly

stable (cf, review by MalmstrUm 'and. Larsson-Raznikiewicz, 1961); :.g 2is 

necessary for enzyme activity but ,Mn 2 can substitute for Mg+2 to a cer-

tain extent '. .....

In their review MalmstrJm and Larsson-Raznikiewicz (1961) point out

a number of reasons why true kinetic.constants for PGK are diffictilt to, .,", 

estimate and that, consequently, the numbers appearing in the literature

are not too reliable., The available data for the reaction in. the direc, .

tion of the phosphorylation of phosphoglyceric acid are summarized'in

Table I.. The turnover number for the enzyme catalyzing the; reaction. i.h.

this direction was estimated by BUcher (19551. to be 36,000. moles/min'. 10 g

enzyme.,, which. for a molecular weight of 34,000 means 12.,240 moles. PGA

b' '; ' ' ' ' 0 ' 0 ' !

.[ 
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converted/min x mole enzyme.,

Keq= tADP][P3PGA]
eq 'ATPaIPQA] 23.2 x 10. 4 (B=Ucher, 195S .

,z ..
: (at pH:. 6.9, 250°)

According to the data of

from pea seed appears to haye
: I , , j , 

* Z .~~~~~i

Axelrod and Bandurski (1953) the enzyme

a'broad jpH opt'imum between about
: ' :

6.8 - 10. ;
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PHOSPHORIBULOKINASE

CATP; D-ribulosei5 pho sphate. lphosphotransferase; E.C..C,. 2.7 .1.19)

QReaction 341

ATP + D-ribulose-51phosphate - ADP + D-ribulose 1,5-diphosphate

Ru5P , RuDP
·. · , :

Phosphoribulokinase, like ribulose diphosphate carboxylase, is an

enzyme specific to the Calvin cycle., It has not been very' extensively

investigated.

Phosphoribulokinase has been purified from spinach by Racke' (1957),

and by Hurwitz et al, (1956)., (See also Hurwitz, 1962.) 'If the specific

activities of the two preparations are expressed in the same units, then

the value for Racker''s enzyme is 90 micromoles RuDP' formed/mg protein.min

vs. 15.,5 micromoles/mg.min for the preparation of Hurwitz et al. (1956).,,

However, 'since the assays used were different, the values are probably not

directly comparable, There is no doubt, though, that Racker's crystalline

preparation is 'the purer of the two.

Properties:

: .. .
pH optimuim: 7'.9;

Sensitive to reagents modifying -SH groups; should'be stored irn .

the presence of -SH compounds.

K (RSP) = 2,Zx 10 M; 

-4
K (ATP)_ = 2.,1 x 10 M.

'Required a di'yalent catiqn., Mg' Z is the most'effectiye, and shows

maximum activityW at'5. x 10'3 M..
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More recent studies on phosphoribulokinase are concerned mainly with.

its possible regulatory role. see revi ew by Preiss and Kosuge,'l1970iO

There. is still siome. disagreement as, to whether phosphoribulokinase

and carboxydismutase. occur as a multienzyme complex Csee MacElroy et al:.,

1968a and Gibson ahd Hart, 1969.'..

For the enzyme'from Chromatium, Gibson and Hart (1969). determined an

approximate molecular weight of 240,000..
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RIB.QSEFPHOSPHATE I.SQMERASE,

(D-PRib.ose 5-phosphate ketol-isomerase R. E.,C 5,3.,1,61

(IReaction. 331

Ribos'e-5-phosphate isomerase catalyzes the interconversion of ribose-5-P

and ribulose-5'-P;

HY=O H2 COH

HCOK C=O

HCOH HOH
HCOH HCOH

H2CO H2®O(

R5P Ru5P

The enzyme participates in both autotrophic and heterotrophic pentose

metabolism.. The isomerase has been purified to various degrees from a number

of sources, but there have been rather few careful studies of the protein at

the molecular level. Probably the most thorough study of this kind to date

is that of Rutner (1970) on the spinach enzyme. An interesting question

concerning this enzyme in plants is whether there are one or two species

.present. Rutner (1970) obtained no evidence of more than one protein in

spinach., In. contrast, Anderson (1971) reports the existence of two ribose

isomerase species in pea leaf - one cytoplasmic, one from the chloroplast.

The enzymes are very similar in all properties examined except their isoelec-

tric points which differ by. 0 .,2. pH units.. From a Metaholic' point of view,

the observation of the, existence. of two ribosephosphate isomerases in the

heterotroph, E, coli, (David. & Weirsmeye.r, 1970j. is also interesting..

Table I summnrizes, the ayailable da~ta foT the isomerase and i.ts reac-

tion., Where. two numbers appear for the specific activi'ty, of the enzyme, the

one in. parenthesis was recalculated on. the basis of Rutner's (1970) data for

molecular weight and absorption coefficient to make them more easily comparable.
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There haye been alQmost no studies i nylying the cheiical mQdification of

the protein. and there i.s lttle saivd in. the a.vailable litera.ture about its

stabi'li'ty.,,
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RIBULOSE DIPHOSPHATE CARBOXYLASE

(3-Phospho,,-,glycerate carboxy-lyase (dimerizing); , E,C. 4.1 .1..39)

(Reaction 15)

D-ribulose. 1,5-diphosphate+ CO2 =-,2 C3-phospho-D-glycerate)

H2C-OP .HC -OP

C=O HOC -H

HCOH + CO COO

HC OH COO 

H2 COP 'HC-OH.

RuDP ' 3-PGA

1 :,.' ', ·Z I. The Enzyme from Higher P.lants

Although RuDP carboxylase is present in all autotrophic and chemo -

trophic organisms, it-has been' most extensively' studied in higher plants.

Here, it is present as a componentof high sedimentation coefficient

Cabout 18S) constituting 'some 50% of the soluble leaf protein. For some

time this protein had;'been isolated andpurified without its enzymatic'.

role being recognized, and it was known only as!"Fraction I Protein".

Later it became apparent, and how it is almost universally recognized,

.that ''Fraction I Pro'tein"-, is the RhDP carboxylase of plants. : a

As can be seen from the studies summarized in Table I, the molecular

weight estimates for the plant 'ezyme range between 4.8 and 5.6 x i05..

The references given describe suitable purification procedures.
:, ', ; -' '. .; . ' .............................................................................................................. , v,
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* '~ ' 'TABLE I.. Molecular Weigkts of RuDP Cairboxylase' from Higher Plants

Organism 'Molecular Weight:x 1Q'5 Reference
''.."' , '. ' 'Cby. sedimjentationiiequi librium) : ... ' : ' ,,

Spinach ' 5,15. Trown (1965).

Spinach ' ' ' ' 5',57 Paulsen & Lane (1966)

Spinach. 4,,75. Pon (967)

Spinach beet 5.61 Ridley..et al. (1l967)',

Chinese cabbage. 5.11 Kieras &: Haselkorn (1968)

Carboxylase preparations have been obtained in highly purified state,

as evidenced by chromatographic, electrophoretic, and ultracentrifugal

analyses-, 'Recently, however, Kawashima and Wildman (1971) have succeeded:

in crystallizing the enzyme from tobacco leaves. The preparation, which

appeared pure by other criteria, nevertheless showed a higher specific

activi~ty after crystallization. The authors suggested that some molecules

in the mother liquor had undergone a configurational change which had led

to' both their inactivation and their inability to crystallize.

The enzyme activity is highly dependent on magnesium ions. Reports'.

in the literature disagree asto whether other cations can.replace Mg+2

Variation in magnesium concentration leads to shifts in pH optima as '.well':

as Michaelis constants, as evidenced by the data compiled in Tables II'.

and III.

TABLE II. 'Variation of the 'pH Optimum of RuDP Carboxylase. ,

with Magnesiium 'Ion 'Concentration :

.' .' Qrganism Mgt2 (CnM') D ,'pti'u. - . Reference 

Spinach .. . .8 8.,5 . Bassham et al., C1968) .

45 : 7,7 , .

Spinach 0. 8.5 Sugiyama, Nakayama &
Akazawa C1968-'b,}

1 7.5 , :
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.As. can. be seen from Table III,. ,the enzyme, has a rather highl affinity

,' : for RuDP but a ver' lo0rone, for'HCO3 ., Eyen. at saturating bicarbonate

concentration., V is only,1340 moles CO2, fixed/min x, mole enzyme at 30°

(Paulsen and Lane, 1966)., Since [n the living plant the- concentration of

CO2 iseven smaller, this feature of the enzyme has: posed a dilemma as to

how it 'can functioni efficiently in'vivo., Recently,' there has been:an indi-

.cation (Cooper et al,, 1969) that perhaps the real substrate for the en-

zymei's 'not HC03 but molecular CQ2, which would mean that the real Km is'

about 50 times lower..

RuDP carboxylase appears to be highly specific: ribulose 5-phosphate,

ribose 1,5-diphosphate and other compounds tested (Weissbach et al., 1956)

could not replace RuDP.,

Phosphate and sulfate ions and PGA are inhibitory with K.i's of about.

4.; mM; 8.mM and 8-9. mM, respectively (see:Paulsen and Lane,.. 1966). .RuDP

becomes inhibitory at concentrations highier than 0!.7 mM.

Reagents that attack SH groups are strong inhibitors of the enzyme.,

A number'of studies have addressed themselves tb the qiiestion of.whether' 

SH groups are, directly involVed in the bindihg of RuDP to the'enzyme or

, cause a generally unfavorable cofifigurational change and', although the

results are not entirely, clear, this work might be useful to the researchers

':: :. ' attempting tO achieve 'insolubilization of the enzyme: Rabin and'Trown

,, 1964); Sugiyama et al, (1967, 1968a,dl; Akazawa et al. (1968).

';' ' ! , .' ' 'Ogren and Bowes C197.1' have shown that oxygen inhibitsthe carboxyLase

from soybean and in another report these authors (Bowes and Ogren, 1971)

indicated that the. enzyme, iqs also inhibited by a.nunhber ,6f nucleotides and:

sugar phosphates, most notably fructose: diphosphate, ATP, and NADPH..'. Non-

pihosphorylated sugars were not inhibitory. .
SP not inhibitory, , | 

C. ., 

,. , '.I ', ..
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As, far as the stabi.lity of the enzyme is, concerned, Trown: (1965) has 

shown 'that reduced glutathione, IQ M sucrose, and 0.05% 'TritotQn a non"i-

ionic detergent) protected the; enzyme from spinach against deactlvation.

In.contrast, the i'onic detergent sodinm dodecyl sulfate rapidly ,.:destroyed; ,

its activity.. Kawashima et al.. (1971), using a crystallized preparation 

of the tobacco enzyme, made the interesting observation that, while the

specific activity of the enzyme did not change during 12 days at room

temperature, if the.enzyme was stored at Q0' it lost, 70% of its activity in

one day; the activity of the cooled preparation could be restored by

heating for 20 minutes at 50°C. That the, enzyme is quite'heat-stable is' 

also indicated by the fact. that one of the, standard purification procqedures, .

(Rackeir, 1962) involves heating the crude preparation at.'80°, the n 60 '. ,

Racker (1962) also recommends a protamine-chlor6form treatment during

extraction of the enzyme purported to increase its stability and stresses

the fact that the enzyme is unstable below pH 6 and that, therefore, pH's .

below neutrality should be avoided. during purification.
, . .I ,

Two other important areas of research concerning the plant carboxylase '.' ';',:

should be me'ntioned, although a more detailed description of the findings, ,

would be beyond the scope of the present summary. These areas are:

1) Elucidation of the subunit structure of the pro'tein.' The "...:

reader is referred to the following papers: Rutner and Lane ' "

.11967), Sugiyama and Akazaw 1967,and 19,70). Sugiyama,

Matsumoto and Akazawa (19.701 and Moon and Thompson (11971).... 
,I'

2) Studies on the actual mechani.,sm of the enzyme.; Pon et al".' '

(1963), AkQyunoglou and Calvinr (1963)_, Trown and Rabin (1964),,

Lllhoger and Rose (I965, Wishnilck.et al. (19691, Cooper.,et

al., (19 69. , '
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IIT. The Enzyme. from'Microorganisms,,

There have been a number of inyestigations of the RuDP carboxylase.

from organisms other' than higher plants but none as thorough as some of

the work summarized above on the plant enzyme. The findings in some of

these studies are summarized in Table Iy., There appear to be a number of

discrepancies in the data, especially in the papers: from Akazawa's group,

which disagree not only with the findings of others but also within their

own. consecutive papers,

Perhaps the one point worth, stressing is the lower molecular weight

of the enzyme froni the Athiorodaceae,' specially, Rhodospirillum rubrum.

As the kinetic constants of this enzyme are approximately the same as that

of the plant enzyme, the smaller molecular weight might present an advan-,

tage for a possible industrial process.
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iI II

RIBULOSEPHOSPHATE. 3-EP-I}ERASE:

CD -RIBULOSE-5 -PH-OSPHATE 3-EPIJERASE'; E.C. 5 .1 .3.1)

-(Reaction. 321

COC . . . .OH

HCO ' -C-OH=Q

HQOC-H: . '

H-C-OH
* I
H2 C-OP

D-Xylulose 5-P

XuSP

H-C-OH
I

H C-OP2

D-Ribulose 5-P

Ru5P.

There are but a' limited number of studies available on ribulose phos-,

phate 3,epimerase.

The enzyme was purified about 700 fold from Lactobaciilus pentosus by

Hurwitz and Horecker (1956). This preparation had a specific activity of

345 "units"/mg, based on an assay coupling the epimerase and isomerase

. reactions: Xu5P epimerase> Ru5P isomeras R5P; where 1 unit Was, defined

as the amount:'of enzyme which formed 1 micromole R5P in 5 minutes (pH-7.5,

25°). The enzyme had a pH optimum between 7.0 and 8'.0. The maximum reac-

· tion velocity.was reached at a Xu5P concentration of 1.6 x 10-3 , and the

K 
m
Xu5P) was, 5.0 x 10'4 M.. The equilibrium constant. for the reaction

K = [Xu5P]/[Ru5P] = 1.5 (at 25°),.. The enzyme was stableiwhen:stored in
eq

the cold and was: quite specific.,

Ru5P 3p,'epimera. se has also been. purified from spleen_' Ashwell an/d

Hickman, 19.57);? the properti'es of this prepara.tion- were qui.te similar to

those of the, bacteriali enzyme, above.
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For the yeast enzyme QCNilliamson. and Wood, 1966)_, the molecular

weight was- determined to be about 46,0Q0Q..,
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TRANSKETOLASE

(Sedoheptulose-.7-Phosphate; D-Glyceraldehyde-3-,Phosphate Glycol

Transferase; E. C. 2.2.1.1l)

(Reactions' 28, 31).

CH OH ___
HO-Gi _-s CHO

HO-CH + HC

' R'I

* "donor ketose"' . 'acceptor aldose"

.'~ ~~~~~~~~· . . : :··

.Ald~ehyde | :
.. .. .

. .~~~~~~~'

. .

, CHZ0H.,

3 -0

R"

CHO

+ 
R

As is the case with.a number of enzymes reviewed in the present re-

port, transketolase has been studied mostly as an enzyme participating in

a degradative pathway, in this case the pentose phosphate. shunt (oxidative

pentose phosphate pathway).. Therefore the data available once again

describe reactions which are the inverse of those taking place in the syn-

thetic, Calvin cycle (reductive pentose phosphate cycle).

Known "donors:' for the above transketolase-catalyzed reaction are: 

xylulose-5-phosphate, fructose-6-phosp.hate, sedoheptulose-7-iphosphate,

Kydroxypyruvate L-erythrulose, D-xylulose, octulose-8-phosphate C(see re-

view by Racker, 1961); D-rib6se, L-lyxose, D-xylose., L-arabinose CVilla-

.. franca and Axelrod, 1971).,- The only-.requirement appears to be a trans

configuration at the 3 and 4 positions.- Acceptors 'include: glyceralde-

hyde-,3-phosphate; BD-erythrose-4-phosphate, D-,ribose -5-phosphate, formal de-.

hyde Cwhen hydroxypyruvate is donor), .glycolaldehyde, glyceraldehyde, D-

deoxyribose.-5phosphate, all0se-6-pthosphate, glucos.e-6-phosphate and D-e

arabinose-,5-.phosphate.,

Few data on the protein are available at the molecular level.
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Transketolase.from yeast has been purified and studied by de,,.Ia Haba.

et al., 1955),,Srere et al., (19588) Datta and Racker (1961 a and b); see

also review by Racker (1961)..

The specific activity of the crystalline preparatioi of Datta and

Racker C1961a)'was 24 microinoles/min.mg protein, with.XuSP and R5P as

substrates, at the, optimum pH of 7.6. ,The equilibrium constants for some,'

of the transketolase reactions, 'measured at 25°', with the crystalline

yeast preparation were:. (Dattarand Racker, 1961a; Racker, 1961).

,Reaction Keq

xylulose-S-P + ribose5.-P '-- Sedoheptulose-7--P + glyceraldehyde-3-P 1.2

xyiulose-5rP + ery'throse.4-P -- fructose-6-P ,+ glyceraldehyde-3-P .10.3

fructose-6-,P + glycolaldehyde' -- erythrulose + erythrose-4-P 0.015

The following kinetic constants were measured by Datta and Racker. (1961a):'

K (Xu-5-P) in the presence of R-5-P ..= 2.1 x 10

4

M·m

K
m

CF-6-P) in the presence of R-5-P = 1.8x 10 M 

Km (Eu-3-P) in the presence of G-3-P ' = 4.9 x10'-3 NM .,. :

Km (R-5-P) in the presence of Xu-S5-P 4.0 x 10
4

M

The molecular weight of the yeast preparation was.estimated to be 140,000. ,,..,,,'

Recently, Heinrich.and Wiss (1971a) reported that yeast transketolase is

made of two subunits of molecular weight 70,000. The enzyme from yeast

requires Mg+2 and thiamine pyrophosphate for activity. Thiamine, thiamine '

monophosphate and thiamine triphosphate cannot replace ~TPP .Sulfate' and :

phosphate ions are inhibitory. at concentrat!ons , above 0.01 M.,

Transketolase has also been. purified from human. erythrocytes: leinrich . .

and Wiss, 1971b.., The preparation still contained glyceraldehyde-3-P dehy-

drogenase, Its; specific activity was 2.38 micromole S7P formed/min.mg pro

,.~~~~~~~~~~i ; ` ,1 .' "
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tein at 37° . The'molecular weight was es'timated to be 136,000. The Km

measured with the "pentose phosphate mixture" (R-5-P + Ru'-:5-P + Xu-5-P)

was 1..7'x 10 '
3 Ml No cofactor requirement was found., Metal ion does not

appear to be required and TPP is probably tightly bound to the .enzyme' -

Sulfate and phosphate ions were inhibitory above 10 mM. 'The pH optimum ...

was'7..75... 

Other sources from.which transketolase has been purified include

.spinach (Bonsignore et 'al., 1962) and Candida (Kiely et al., 1969)......

Studies on the mechanism of action of transketolase, especially with

regard to the function of the thiamine pyrophosphate are reviewed by Kram-. '

pitz' 1969).:-

The mechanism involves a two-reaction sequence in which the inter-. ....... ,

mediate is tightly bound to the enzyme. In the first reaction, the ketb ,:

substrate is cleaved with. formation of a two-carbon adduct of thiamine

pyrophosphate-a,8 -dihydroxyethyl thiamine diphosphate:

.E -'TPP + Cn ketose ,- E-diHETPP + C 2 aldose

Partial structures: . .

pyrimidine-2-I 1 - p y ..;

TPP di,-HETPP ,

Both TPP and diHETPP are tightly bound tQo'the enzyme; thus, glycolal ,

dehyde is not detected.inf.the reaction."mixture. and the detection of glyceral-

dehyde. 3phosphate and,,di-,HETPP necessitates stoichiometric amounts of

enzyme, The two-carbon moiety must be transferred to an acceptor aldose

,,-,. . , , : - :

, ~ . .r .... 
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before the enzyme-TPP complex becomes available for a new reaction

sequence · .;.. 

E - diHETPP + Cm aldose - E - TDP + C ketose

Since the enzyme is rather nonspecific with respect to the acceptor

aldose, it is clear that when: a number of compounds are,.present. in the

reaction mixture the direction in'which' the overall' reaction will proceed

will depend on the relative concentrations of the various compounds and

the relative rates of reaction. Any. systems design ought to 'take these 

factors into consideration, although it is possible that in a steady-state.

situation, such-as we encounter in the operation of a cyclic process, the

system will become self-regulatory. 
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TRIOSEPHOSPHATE. ISOMERASE

(D-Glyceraldehyde 3-phosphate Ketol -isomerase; E-..C.. 5.3.1.,11)

;' (ReactionrL 21)

Triosephosphate i'somerase catalyzes the"'reversible conversion of

D-glyceraldehyde 3-,phospphate and dihydroxyacetone phosphate;

pfH ,~ ' > :/ H2CH,
HCOH =

CH O. H2COH

GAld3P DHAP

The enzyme'is present at high levels in both animal and plant tissues.

'Crystalline preparations of the enzyme have been obtained from calf muscle

(see Beisenherz, 1955), yeast (Krietsch et al., 1970), rabbit muscle

(Norton et al., 1970), and horse liver '(Lee et al., 1971). Purified enzyme,

has also been prepared from pea seeds (Turner et al., 1965), green algae

(Meeks et al.,, 1968), human liver (Lee et al., 1971) and other sources..

Recently, Anderson (1971) has succeeded in separating by'isoelectric

focusing the cytoplasmic and chloroplast pea leaf enzymes.

Estimates of the enzyme molecular weight and the kinetic parameters

of the reaction in the direction of conversion of glyceraldehyde 3-phos-

phate to dihydroxyacetone are summarized in Table I. The list is probablfy

not exhaustive but the enzymes from various sources appear to have very

similar properties. ,Triosephosphate isomerase is a protein of molecular

weight 50,0Q0 - 60,QOOQ, probably composed of two similar "subunits. The

enzyme has a very high activity, and the Michaelis constant for glycerial-

dehyde 3-phosphate is low-. The equilibrium constant for the reaction is

about 22 (Idihydroxyacetone phosphate]/l D-glyceraldehyde 3-phosphate]. .'
oxy~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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There have been a number of studies directed at elucidating the

mechanism of the. triosephosphat e isaereaction and the active center

of the enzyme, (See, for example, Burton & Waley, 1966, 1967 and 1968a;

Hartman, 1970, 1971i Wolfenden, 1970; Miller & Waley, 1971).. Hartman

C19711 has sequenced 15 amino acids around the active center containing an

essential glutamyl residue. Since the studies mentioned often involved

chemical modification of-the protein, they should be of use to the .re-

searcher working on:the insolubilization of the isomerase. In this regard

it should be mentioned that Ktietsch et al. (1970) found the yeast enzyme

to be very .resistant to protein modifying reagents.
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ENZYME INSOLUBILIZATION AND STABILIZATION.

The development in recent years of a variety of methods for the in-

solubilization of proteins has opened for the first time the possibility

of large-scale utilization of enzymes in industrial processes., Reactions.

.performed in the presence ofinsoluble enzyme derivatives are biphasic and

the'enzymes can easily be recovered by mere filtration and reused as long

as they remain active; alternatively, insoluble enzyme preparations can be

packed in columns, again eliminating the need for separation. In a majority

of the cases reported so far, though by no means in every case, insolubiliza-

tion of enzymes has resulted in improved enzyme stability, another important'

factor in a possible industrial application. The reason for this phenomenon

appears to be a decreased susceptibility to denaturation and, in the case

of proteolytic enzymes, which have constituted a large proportion of the

enzymes whose insolubilization has been attempted to date, a decreased

amount of self-digestion.. The most serious difficulty encountered in the

process of insolubilizing enzymes is the relative loss of activity due to

the various treatments to which the enzyme is subjected.

One could, therefore, summarize the main requirements for the success 

ful industrial application of an enzymatic process, as follows:

i) that the enzyme derivative remain sufficiently active for

the process to take place within a reasonable time span;

2) that the derivative be truly insoluble, i.e. that no leakage 

occur during the various stages of the process. This must be tested

under the actual conditions of the projected process, as it has been

shown that small changes in conditions can bring about 'desorption of

the enzyme; and
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3) rthat the enzymne remain stable for periods long enough to

make its use economically feasible., In this regard, one must 'of

course consider the cost of the largerscalee preparation of the' 

enzyme itself '

A variety of methods for the preparation of water-insoluble protein

derivatives has been developed and an overall outline of these procedures

i's attached., In general, the procedures fall into two large groups: those

involving only a-physical immobilizationi of. the protein and those based

on a chemical'reaction linking the protein molecules either to an insoluble ''

support, or to each other, or both. Each method has its advantages and

disadvantages.' I'n the past, most'work has been done using enzymes. cova- ,

lently bound to polymeric matrixes. More recently, ·the use of porous' glass

as a support for covalently attached enzymes appears to be gaining con-

; siderable application. ' ' ' ' " .

The choice of a particular method for the insolubilization of a cer-

tain enzyme appears to be largely empirical as not enough generalizations

have emerged from the cases studied 'so far. A few possible starting con-

siderations might be listed. Thus, in the case when covalent'binding of

the protein to a support is envisaged, knowledge of the primary structure, 

around the active site might be useful in determining' whichmodifying' ' ;

agents should be avoided. When the substrate for a reaction is charged,

the use of polyionic matrices of the same charge is- to be avoided, due to

the negative effect of the charge repulsiQn; conersely, the. use of an

oppositely charged matrix might be of adyantage., Another factor to be

considered is the size of the substrate. Thus, in the case of large sub-

,strates one should avoid using'methods in whichi. the enzyme is physically '

. .~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~r
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occluded ina matrix, as the reaction could be highly hindered by the

diffusion,. of the.substrate' into the matrix. .Generally speaking,.. however,

the procedure adopted would have to be largely a matter of trial-and-error.

.A number of reviews on insolubilized enzymes are; now; available and

are listed in the' attached bibliography.'" The rcent reviewby Melrose.

C1971) Csee Section I' of bibliography) is particularly up'to-date and

well,documented in the various areas of interest' both to the biochemist

and to the chemical engineer. ", .

We have also compiled 'a partial bibliography in which the available

literature is classified according to the method of insolubilization used.

Two alternatives to the usual methods of immobilizing enzymes by

''' nsolubilization could also be mentioned. In',a recent paper;,'Wykes, , 

Dunnill and Lilly CBiochim. Biophys. Acta 250, 522, 1971) reported the"

immobilization of amylase by attachment'to soluble support materials.

The enzyme was attached to various polymers, in the usual'manner, but the-

'latter were in"a soluble'form., This permits easy separation byultrafiltra'

tion but removes some of the diffusion and steric barriers encountered by

high molecular-weight substrates in the case of water-insoluble supports.

Another interesting possibil'ity.is that studied from a'theoretical point. 

of view by Rony'(1971) (see'Section II of bibliography);of occluding the

enzymes within hollow fibers. This precludes the 'need for insolubilization'

and provides at the same time an automatic means of separation of the low,

molecular-weight reactants'. However this method would' have. no advantage

from the point of view o incresing enzyme stability as compared to cn-'

ventional enzyme reactions in., solution..
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OUTLINE OF

METHODS FOR PRE. ARATIN -OF, WATER-INSOLUBLE PROTEIN DERIVATIVES

A.. 'PHYSI'CAL- ADSORPTION 'ON;

1. Neutral surfaces; glass beads, quartz, charcoal particles, dialysis

tubing, Millipore filters, collodion membranes, silica gels;

2, Ion-exchange resins: cationic: DEAE-celluos e and DEAE-Sephadex;

anionic: carboxymethyl (CM) -cellulose..

Disadvantage of the method: variation of pH, 'ionic strength, tempera-

ture or addition of substrate maylead to desorption.

B. OCCLUSION IN CROSSLINKED POLYMERIC MATRICES ,.

CCarry out polymerization reaction in aqueous solution containing

enzyme.) Polymer most frequently used: acrylamide + N, N-methylene-

bisacrylamide. Gel can then be dispersed into particles.

Advantage:.imposes minimal constraint on enzyme, no covalent bond

formation, could be applied to 'any enzyme.

Disadvantages :

a) because of broad distribution of gel porie size,. leakage 6f

enzyme is difficult to avoid;

b. enzyme reaction occurs within domain of gel matrix, there-

fore reaction limited to substrates which. can diffuse

readily into gel;

c) free radicals generated during polymerization may affect

activity of enzyme.

C, -'COVALENT BINDING TO'WATER-INSOLUBLE' CAPRIESI

Should be done:

a) via functional groups non-essential for activity-;
. .

. .p
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b) under non.-denaturing conditions..,

Functional groups suitabhle for covalent..bindingI a and a amino groups;

y, B and y carboxyl groups; phenol ring of tyrosine; -SH of cysteine;

-OFFof serine; imii:dazole of histidine., :

Some methods commonly used:-

a) Binding of proteins- via amino groups to activated carboxyl

matrices. Activation can be achieved:

WC.) with caB odii'mides:

N~~~~~~~~[N

Bi H2N +CN +H + C-

C2) wi.th Woodward's reagent (N--ethyl,-5 -Sphenylisoxazolium-3'-

sulfonate). ' '

so

,c+ -* coo- omo? * +
HC \ C2HH -

H 22CHCNH 5 SO

r.. .

(3). by transformation into the corresponding azides: ' . , 

, .OCI:COOH - 3 _'-CH22C''HO N-OCH 2 CON 3

CM cellulos.e CMC hydrazide CMC, azide, '

-- CH2 CON 3 + H2N-protein_ - OC 2 CONH"protei
* \ | 2Cb

....

.

, .
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b) Binding of proteins via amino groups to activated hydroxyl

matrices.,.

C) with chloro-.s-tri'azines;,

N.C1 N 'H 2N H N. . ' .D 
·MO-+CIN '~0

; 40OH +N 

:2) wi/th. cyanogen halides:

.-O H2 N- -OCONHZ
-OH + BrCN C= NH, - * -

iminocarbonic acid carbainic acid .ester'

c) Acylation of protein amino groups by ethylenemaleic acid (EMA)

copolymer:

"N^-£2- 2-" H 2 `H2 h-CH12 'CH-CfHCH2 -CH2

OC.,. · O , O'., 0- N i '

d) .Binding to.diazotized resins, mainlty via tyrosine residues

Cother groups reacting,are -NH2, lysine, arginine, histidine);.

A number of different 'carriers have been used; these possess ''

-NH2 groups which are diazotized, then reacted with the pro-,

tein: .H
A:rM- H+

ArNHI + N O - - -r-'- + HO .0 (
..'."'2 ' "2"3 /7 "'2 "2 

ArN2+ ; I OH Ar-NN-N-_OH:

ArN2 ' + xNH --- x-NH-N=N-ArZ2.
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Some carriers used:

a) Synthetic .organic polymers ,

Neutral: cellulose, Sephadex, Sepharose.

Polyelectrolyte; C0M-cellulose, EMA, aminoe,,thylcellulose,

b) inorganic carriers; glass, NiQ..

The glass is made into an amiinoalkylsilane derivative. This

is then either converted into the isothiocyanate derivative

and linked to the protein by sulfonamide bonds or diazotized

and bound to the protein by diazo linkages.

D. IMMOBILIZATION BY INTERMOLECULAR CROSSLINKING'

In this method either the protein itself is polymerized and rendered

insoluble, or it is bbund to a matrix and crossli'nked. In most cases

bifunctional reagents are used for crosslinking but sometimes inter-

'molecular bonds are formed between protein;molecules.

I"~~~~~~~~~~~~~''

5, ' . ! ffi ' - :> j ' + '!.,' '.;~~~~~~~~~~I

i z

I

. ,

..

ii ··

! .: 

sI , , 

* I , . . I 

··

., , 4' I 

I :. . .~~~~~~~~~~~~~~~

. . I jI I

- i : ,' ,l :~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

. I



- 128 -

BIBLIOGRAPHY'

* I.. 'Reviews 'on WateriIisoluble Protein Derivatives

1., E.M. Crook.. UEnzymes
I
Attached to Solid Matri~ces-' , Biochem. J.. 107,

Ip 109681..

2. L. Goldstein, '"lfater-.Insoluble Derivatives of Proteolytic' Enzymes",
in Methods Enzymology (G,E. Perimann and L.. Lorand, Eds.), vol. XIX,
p.. 935, Academic Press, New York and London, 1970.

3, L. Goldstein and E.. Katchalski'. '"Use of Water-Insoluble Enzyme
Derivatives in,Biochemical Analysis and Separation"'; Z. Anal. Chem.
243, 375 (1968).

4., G,G, Guibault.. "Use of Enzymes in Analytical Chemistry", Anal. Chemn.
38, 527 R (1966).

5. E. Katchalski, I. Silman and R, Goldman. "Effect of the Microenviron-
ment on the Mode of Action of' Immobilized Enzymes", in Advances in

·Enzymology (F,F, Nord, Ed.), vol. 34, p. 445, Wiley-Interscience, New
York, 1971.,

6.- M.D. Lilly, G. Kay, A.K. Sharp and R.J.H. Wilson. "The Operation of
Biochemical Reactors Using Fixed Enzymes"', Biochem. J. 107, 5p (1968).

7. G. Manecke. 'Methods of Attaching Enzymes to Various Polymers and
the Effects on the Properties of these Enzymes'', Biochem. J. 107, 2p
(1968). 

8.' G.J.H. Melrose. "Insolubilized Enzymes; Biochemical Applications of
Synthetic Polymers", Rev'. Pure and Appl. Chem.. 21, 83 (1971).

9. K., Mosbach. -'"Enzymes Bound to"Artificial Matrixes", Scientific Amer-
ican, March 1971.

10. I.H. Silman -and E.� Katchalski. 'Water-Insoluble Derivatives of Enzymes,
Antigens, and Antibodies", Ann. Rev'. Biochem. 35, 873 (1966).

11'. R. Whittman, B.A. Edwards 'ad ,KP. Wheeler. "An Approach to the Studx
of Enzyme Actipn in Artificial- MembraneS''-, 'Biochem. J. 107, 3p (1968).

12. H.H.. Weetall.., ''Enzymes Inimobilized on Ihorganic Carriers", Researchl
Development, December 1971, p. 18.,.. : . - 'b , '18 . , . . . 1,,, ......................... 

.. I . . . .II

i ..

I. . . .

I,"

I : ' ,

.I..

'' . .

: IxI

I . , 1, .... "

; I , ,' . ,;

' . ',

I, ie

i

. .. . .I

; ~ Jo I; . ..

I .'

" , . ; 1. I "

.S. I.



-129'- 

II. Insolubilized Enzymes: Effect of Microenvironment, Theoretical Models
and Engineering Applications ,... 

1. R., Goldman and E.. Katchalski.. "Kinetic
brane Carrying Out a Consecutive Set of
Biology, [n press,..,

2., R, Goldman, O. Kedem and E, Katchalski..
I:. Analysis of the Kinetic Behavior of
- *MY . 0:- .. 7 A r, O

Behavior of a Two-Enzyme Mem-,'
Reactions:"' , J., Theoretical,,

I'Papain-Collodiori Membranes.
Enzymes Immdbilized in Arti-

, n '1Q1.
tr1C!at ivMemDranes'", Blocnemistry i,. 4l L5± ('l.'.

3.' R.. Goldman, O. Kedem and E. Katchalski. '"fKinetic Behavior of Alka-
line Phosphatase-Collodion Membranes", Biochemistry 10,'165 (197i1) :

4., L, Goldstein, Y., Levin and E. Katchalski. "A Water-Insoluble Poly-:
anionic Derivative of Trypsin. II.. Effect of the Polyelectrolyte 
Carrier on the Kinetic Behavior of the Bound Trypsin", Biochemistry 3,,
1913 (196414..

5., W.E. Hornby', M.,D,'Lilly and E.M. Crook. Biochem. J. 98, 420 (1966).

6. W.E. Hornby, M,D,., Lilly and E,M. Crook.. "Soqme Changes in the Reac-; i
tivity of Enzymes Resulting from their Chemical Attachment to Water-
Insoluble Derivatives of Cellulose", Biochem. J. 107, 669 (1968).

7. V. Kasche, H., Lundqvist, R.. Bergman and R., Axen. "A Theoretical 
Model Describing Steady-State Catalysis by Enzymes Immobilized in
Spherical Gel Particles. Experimental Study of a-chymotrypsin- ,
sepharose", Biochem., Biophys. Res. Commun., 45, 615 ,C971). -

8. E. Katchalski., ''Effect of Microenvironment on' the Mode of Action! of
Enzymes", Abstracts of the Seventh International Congress of Biochem~,
istry, Tokyo, 1967.

9, E,,Katchalski. "A Synthetic. Approach to the Study of Microenviron-
mental Effects on Enzyme Action"' in "Structure-Function Relationships :
of Proteolytic 'Enzymes' (P. De'siuelle, H. Neurath, and M. Ottesen,
Eds.), Munksgaard, Copenhagen, Denmark, p., 198 (1970).

10. E. Katchalski, I. Silman and R.I Goldman. "Effect of the Microenviron-
ment on the Mo'de' of 'Action of Immobilized'Enzymes", in Advances in,
Enzymology (F.j, Nord, Ed.,), vol. 34, p.' 445, 'liley-I ritersciefce ,
New'York, 1971 , , , ..

11. T. Kobayashi. and M.,: Moo-Young.. "Backmiing and Mass Transfer in the
Design of Imnmobilized-Enzyme Reactors"', BotecL., Bioeng., XII, 893
-1971). 

12. M.D. Lilly, '.E,. Hornby and E,M, Crook., 'The Kinetics, of Catboxymethyl-
cellulose-Ficin in Packed Beds'', Biochem., J' . 100, 718 C1966). , 

;.

'' :

.: 

"i ; ' g '' 

'. .·

r. ,

,

,~

.. .

!· 

,,.

' .I

. .

....

.. 

';'.



- 130 -

13. M.D. Lilly,
Biochemi.cal

G. Kay, A.K,. Sharp and R.J.I{.. Wilson.' '-'The Operation of
Reactors Using Fixed Enzymes"', Biochem. J. 107, 5p (1968).

14. MiD, Lilly and A,K, Sharp. The Chemical Engineer (U.,K.,) 215, CE 12
C1968.. ,

1.5. P.E. Rony-, '-5ultiphase Catalysis.
Biotech. Bioeng. XII:, .''431 1971),

II:., Hllow Fiber. Catalysis",
' '.. . I. .1 I 

16. R.J.H. Wilson, G. Kay and M.,D. Lilly. "The Preparation and Kinetics
of Lactate Dehydrogenase Attached to Water-Insoluble Particles and
Sheets", Biochem, J., 108, 845 (1968).,

17. R.J.H. Wilson., G.. Kay and MD., Lilly. 'The Preparation and Properties
of Pyruvate Kinase Attached to Porous Sheets, and the Operation of a
Two-,Enzyme Continuous-Feed Reactor"' -, Biochem. J. 109, 137!(1968).

ITII'. Binding of Proteins to Carboxylic Matrices

1 f. W. Brummer, N. Hennrich, M, Klockowv, H. Lang and H.D'. Orth. 'Prepara-
tion. and Properties of Carrier-Bound Enzymes", Eur. J. Biochem. 25,
129 (19721 ..

2. W.E. Hornby, MD.. Lilly and E.M. Crook. "The Preparation and Proper-:
ties of Ficin Chemically Attached to Carboxymethylcellulose", Biochem.
J., 98, 420 (1966).

3. N.A. Mi~tz and L'.J, Summaria.
I A n;>rs 4-ca ^ Tr i_-tl

'!Synthesis of Biologically Active Cellu-
NT+.._- I' on. r',r (1 nrflC'

lose erI:vaLves I O Inzymlles", Nature 189Y, b/0 (l±ol).

4. R.,P Patel, D.V. Lopiekes, S.P. Brown and S'. Price. "Derivatives of -
Proteins. II. Coupliingof . -Chymotrypsin to Carboxyl-Containing Poly ': ',r;:l,
mers by use of N-Ethyl-5-phenylisoxazolium-3'-sulfonatei, Biopolymers '
5, 57 0C1967), : . . .

5. A.B. Patel, S.N. Pennington and.H.D. Brown. "Insoluble Matrix-Supported
Apyrase, Deoxyribonuclease and Cholinesterase", Biochim. Biophys. Acta
178 626 (1969).

6. T. Wagner, C.J.. Hsu and G. Kelleher. "A New Method for the Attach-
ment and'Support'of Active Enzymes',, Biochem, J. 108,.892 (1968).

7,- N, Weliky, F.S. Brown and E.,C, Dale. "'Carrier-Bound Proteins: Proper-,
ties of Peroxidase Bound to. Insoluble Carboxymethylcellulose Particles",
Arch, Biochem.. Biophys., 131, 1 19.691.,

, . ' '' ,' 1 

. .' ' 

., i

, , , , ,

I ,.



-~ ~131 -

IV. Binding of Proteins: to Polysaccharide Matrices'

1. R. Axen, J., Porath and S. Ernback. "'Chemical Coupling of Peptides
and Proteins to Polysaccharides- by Means- ofCyanogen Halides", Nature
'214, 1302 (1967).

2. G. Kay and E.M. Crook. I'Coupling of Enzymes to Cellulose Using Chloro,-
-s'triazines"', Nature 216, 514 (1967).,

3. G. Kay and M,D, Lilly. "The Chemical Attachment of Chymotrypsin to
Water-Insoluble Polymers Using 2,-amino-4,6rdichloro -s-triazine"'',
Biochim, Biohpys, Acta 198, 276 C19701.,

4., G.. Kay, M.D. Lilly, A.K. Sharp and R.J.H. Wilson., "Preparation and
Use of Porous Sheets with Enzyme Action"' Nature 217, 641 (1968).

5. J. Porath, R. Ax'en, and S. Ernback. 'Chemical Coupling of Proteins to
Agarose", Nature 215, 1491 (1967).

6. T. Sato, T. obri, T.. Tosa and I. Chibata. "Studies on Immobilized
Enzymes, IX.. Preparation. and Properties of Aminoacylase Covalently
Attached to Halogenoacetylcelluloses", Arch. ,Biochem. Biophys. 147,.
788 C(1971).

V. Binding of Proteins to Maleic Copolymers

-1. W. Brummer, N. Hennrich, M. Klockow, H.. Lang and H.D. Orth. "Prepara-
tion and Properties of Carrier-Bound Enzymes"', Eur. J.- Biochem. 25,
129 (19.72).

2. Y., Levin, M. Pecht, L. Goldstein and'E.. Katchalski. " A Water-Insolu-
ble Polyanionic Derivative of Trypsin. I. Preparation and Properties",
Biochemistry'3, 1905 (1964).

VI. Binding of'Proteins to Carriers by Diazotization 

1. A. Bar-Eli and E. Katchalski. "Preparation and Properties of Water-
Insoluble Deriv'atives of'Trypsin'l? J.. Bio'. Chem., 238, 1690 (1963). : ,

2. J.J., Cebra, D., Giyol, EL.I. Silman, E.. Katchalski. "A Two-Stage Cleav- 
age of Rabbit y-,Globhulin by, a 1Wter-Insoluble Papain. Preparation 
'Followed by ,Cysteinet', J' Biol. Che.i'236, 1720. 9611.'

3., RV.. Davis,' R.M. Blankepi and R.J., Beagle,'; 'Diazotized m-Aminobenzyloxy-.
methylcellulose 'as the Insoluble Matrix. for -an Immunoadsorbent Used
in the Purification of Antigens and Airtihbdies", Biochemistry 8, 2706 
19.691 ,

" ;: I .
t

.. ,

, r

, ~ ·



- 132

4. L. Goldstein,. M. Pecht, S.. Blumberg, D, Atlas: and Y., Levin. 'WTater-
Insoluble Enzymes., Synthesis. of a New Carrier and Its Utilization for
Preparation, of Insoluble Derivativyes: of Papain, Trypsin, and Subtilo-,,
,peptidase A't, Bi'ochemistry 9, 2322 C19701)

5., E.. Rieseliand E., Katchalski.,, tPreparation
Insoluble Derivatives of Urease'', "J, Biol.,

and Properties of Watert
Chem. 239., 1521 [1964).

6, .I.H.. Silman, . Albu-,WeissenbFerg and E., Katchalski. S'ome Water-
Insoluble Papain Derivatives'.' , Biopolymers 4, 441 (1966).

VIT, Binding of Proteins to Acrylic Copolymers

1.. K. Mosbach. '"Matrix-iBound Enzymes., Part I.. The Use of Different 
Acrylic Copolymers as Matrices't ,, Acta Chem; Scand. 24, 2084 (1970).

2., P.D., Weston and S. Avrameas,. "Proteins Coupled to Polyacrylamide , , ':
Beads Using Glutaraldehyde", Biochem. Biophys. Res. Commun. 45,..1574 
(1971).,

VIII. Crosslinkingof Proteins with Bifunctional Reagents or by Intermolecular
Bonds ....,n,, ,.

1. S. Avrameas and T,
Protein Polymers.
bodies ' ,: J. Bio6l.

Ternynck. "Biologically Active Water-Insoluble
I. Their Use for Isolation of Antigens and Anti-
Chem, 242, 1651 (1967).; .

2, '.G. Broun:, E. Selegny, S.. Avrameas, D. Thomas. "Enzymatically
Membranes: Some Properties of Cellophane Membranes Supporting
Linked Enzymes", Biochim. Biophys. Acta 185, 260 (1969),

Active
Cross-

3, R. Goldman, O. Kedem, I.H. Silman, S.R. Caplan, and E. Katchalski.
"'Papain-Collodion Membranes. I.; Preparation and Properties', Bio-
chemistry 7, 486 (1968). 

4. R. Goldman, H.I. Silman, S.R. Caplan, O. Kedem and E. Katchalski.
"Papain Membrane on a Collodion Matrix; Preparation and Enzymic
Behavior", Science 150, 758 (1965).

5., A.F.S.A. Habeek, "tPreparation of ,Enzymically Active, Water-Insoluble
Derivatives of Trypsin"', Arch. Biochem., Biophys. 119, '2.64 (1967].

6., R.. Haynes:. and .C,A. Walsh. ?'Enzym,e Enyelopes on CQlloidal Particles":,
Biochem, Biophys., Res,, Conmmun. . 36, 235 (969)..

7, D,J, Herzig i A..W Rees' and R.:A, Day'., '3if'tunctiQnal Reagents'and Proa
tein Structure. Determination., Th'eReactiojn of Phenolic'Disulfonyl
Chlorides with. Lysozyme", Biopolymers 2, 349 (19641..

I

·. 1. .

·

. . .
. .

.. r I;. ,F., , ;, I .

.. ,

. i t

;'
. .

;

. .

. .

; .

: ...
;: I. 

..



- 133 -

8. E.F., Jansen and A,C. Olson. "'Properties and Enzymatic Activities of
Papain Insolubilized with Glutaraldehyde"', Arch.' Biochem. Biophiys.,
129, Z1 G9691.,

9., K., Ogata, M. Ottesen., I., SVendsen.. tPreparation of Water--Insoluble,
Enzymatically Active Derivatives of Subtilisin Type Novo by Cross-'
li'nking wi'th Glutaraldehyde"t , Biochim.. Biophys. Acta 159,, 4'03 C1968). 

10.. RP., Patel and S.. Pridce., 'erivatives of Proteins. I. Polymerization
of 'c-Chymotrypsin 'by Use of N.Ethyl-5-phenyloxazoliumn-3'-sulfonate",
Biopolymers 5, 583 (1967).,

11. I.H. Silman, M. Albu-.Weissenberg and E., Katchalski. "Some Water-
Insoluble Papain Derivatives'!, Biopolymers 4, 441 0966).

IX. Binding of Proteins to Inorganic Carriers

1. H.H. Weetall. "Trypsin and Papain Covalently Coupled to Porous Glass:
Preparation and Characterization", Science 166, 615 (1969)..

2., H.H., Weetall. "Enzymes Immobilized on Inorganic Carriers", Research/ ,
'Development, December 1971.

3.. H.H. Weetall and L.S. Hersh. "Preparation and Characterization of.
Glucose Oxidase Covalently Linked to Nickel Oxide"', Biochim. Biophys.
-Acta 206, 54 (1970)1.

4., P.J. Robinson, P. Dunnill and M.D. Lilly. "Porous Glass as a'Solid'
Suppor~t for Immobilisation or Affinity ,Chromatography of Enzymes",
Biochim., Biophys. Acta ,242, 659 (1971).

JI' . . ,1 



- 134 -

THE. .RPNENATION OF ADENOSI.NE TR`IPHOSPHATE.

In. biolQgical systems, the energy required. to, driye certain reactions

in a direction., inherently unfavorable is supplied by, so-called "'high-energy

compounds," of whichATP is the primary example. Hydrolysis of the last

pyrophosphate bond of this molecule:

ATP -- ADP + Pi

releases approximately 7 Kcal (in vivo this may be as high as 12 Kcal), and

this excess energy can be used to drive an appropriately coupled reaction.

In nature? formation of ATP proceeds by one of the following three

mechanisms: 1) substrate level phosphorylation, in which some of the

energy released in the course of the degradation of carbohydrates is stored

in the high-energy bond of ATP; 2) oxidative phosphorylation taking place

in mitochondria, in which oxygen is the terminal electron acceptor, and

3). photophosphorylation, which takes place in chloroplasts and other photo-

synthetic tissues and in which the energy is supplied by solar light, as

explained elsewhere in this report.

The reductive pentose phosphate cycle (Calvin cycle) and the alternate

reversed oxidative pentose phosphate cycle and formaldehyde-based cycle

proposed in the present report as possible routes for the synthesis of

carbohydrates each involve some reactions which use. up ATP.. The overall

energy balance for these processes and the basis of the requirement for

ATP are explained in the IntrQduction., The utiitza.tion. of ATP and the

consequent formation of ADP raise the prQbienl of ATP regeneration, as we

wish to have a totally self-sufficient system, in which the only inputs are

CO2, H20, and energy..
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An. attempt to reproduce entirely any of the natural ATP regeneration.

processes: appears. to us to be futile- at this ti3e. Since it is our purpose

to synthesize carbohydrates, substrate-level phosphorylation, based on the

degradation of sugars? is obviously, out of the question. The other

processes--oxidative and photosynthetic phosphorylation--involve intricate,

membrane-bound electron-transport systems and a.series of not completely

understood processes in which electrons are moved to successively lower

energy states, at the same time using the excess energy for the formation'

of ATP and the reduction of pyridine nucleotide cofactors. The isolation

of these complicated systems in active form and their possible stabilization

for long-range industrial use do not appear to be realistic targets for the

near future,

We have therefore attempted to delineate other ATP-regenerating pro-

cedures which must of necessity involve some chemical reactions not present

in the living cell.. The procedure outlined below appeared to us quite

promising, as all the reactions have already been studied and some are even

being used industrially... A plant design based on this series of reactions

and the various problems of efficiency, etc., form another chapter of this

report,

This method is based on the enzymatic reaction in which ADP is phos-

phorylated by acetyl phosphate. The enzyme involved is acetate kinase:

H3C-C* ± + P AD H3 C-C + ATDP 

acetyl phosphate acetate

For the' frmation of acetyl phosphate the following sequence of organic

reactions is proposed 
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A1PO

CyCOOKH 7:.,R-:C. i, =,CO. t H20 C

acetic acid ketene

CH-2c= + cHcOOH --.--- o

acetic anhydride

H3C -C II'0
H3 CC +° H3P0 4 -. P H3C-COOH + H3C C0H C-C/ 3 43\

It can be noted that the sequence is cyclic, as acetate and phosphate

are reused to make acetyl-P.. Of course, since we are making "high-energy"

bonds, first in the form of acetyl-P, then as ATP, we must have an input

of energy.--in this case this is supplied in the form of the heat necessary

to dehydrate acetic acid. It is also assumed that acetate can be efficiently

recovered from other compounds in the system, so that it can be used for

acetyl-P regeneration..

The enzyme, acetokinase (ATP-acetate phosphotransferase, E.C. 2.7.2.1),

is present in certain microorganisms where the formation of acetyl coenzyme

A, a compound universally required for the metabolic utilization of acetate,

proceeds via acetyl phosphate, in the following manner:

ATP + acetate ' ADP + acetyl phosphate
(acetate kinase)

CoA + acetyl phosphate . acetyl CoA + P..
(phospho transacetylase) 1

In. higher plants and animals the actiya~tipon of acetate takes place

through a different reactjon., namely,:

ATP + CoA --.- acetyl CoA + PP. t, AMP

catalyzed by the enzyme acetate thiokinase. -
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The presence. of acetate kina.se actiyvity. has been demonstrated in a

number of microorganisms but. hi'ghly purified preparati pns have not been.

reported.. The best preparation. avaihlable to date is that. from'E. 'coli

(Rose et al ,, 19541 whose purity, was estimated by' Anthony and Spector (1970)

at 17%., The latter authors also'estimated a molecular weight of 46,000.

In the direction of ATP formation the kinetic constants were (Rose et al.,

195.4)_;

K
m

(acetyl phosphate) = 5 x 10
'

3 M

Km (DP) = 1..5x 103 M

Mg+ 2 or Mh 2 are required by the enzyme:

Km C0g+2 = 5 x 10 -3 M.

The pH optimum is 7,5 and fairly sharp.

The equilibrium constant at pH 7.3 is greatly in favor of ATP forma-

tion:

[ATPI [acetate]
K = 0.006-0.011
eq JADP] [acetyl P]

This
·
means that AG of hydrolysis of the anhydride bond of acetyl

phosphate is about 3 Kcal higher than that of ATP. In other words, in the

proposed ATP regeneration scheme, we are using up this amount of extra

energy by going through an intermediate acetyl phosphate stage. In this

way the phosphorylation of ADP can be expected to proceed to completion.

The enzyme is quite specifi.c for its substrates. Of other carboxylic

acids tested, only propionic acid was actiye, being phosphorylated ten

times slower than. acetic aci.d,
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ENGINEERING CONSIDERATIQON.

I-. -'Iitrt'duction 

This section discusses an engineering synthesis of the Calvin cycle

of photosynthesis, using insolubilized enzyme reactors., The net reaction

whitch. is accomplished is- the production of glucose from carbon dioxide and

water., In addition to the insolubilized enzyme reactors which carry' out the

steps' of the Calvin cycle, such. a system must include regeneration schemes

for ATP and NADPH?,, as well as separation :devices to effect the difficult

separation of ions which is required.

Figure I--1 illustrates the design configuration to accomplish the reac-

tions., The enzymes of the Calvin cycle are fixed on insoluble matrices in

reactors which may be either of fixed bed or iof stirred tank design. Water

and carbon dioxide enter the sequence, and the carbohydrate product as

glucose (or starch) is withdrawn. The schematic diagram is simplified in

that it does not show recycle streams or enzyme replenishment.

Table 1 lists the enzymatic reactions which. occur in each reactor as

numbered, Briefly', ribulose diphosphate and an air stream with carbon

dioxide are fed into a stirred tank reactor, in which the enzyme ribulose

diphosphate carboxylase may be insolubilized on glass beads. The carbon

dioxide is fixed to the ribulose diphosphate and, via an active intermediate

compound,. 3-phosphoglycerate is produced. The depleted air stream is

purged and the PGA is, directed to the' next enzyme reactor in sequence.

The three-,carbon. compounds are condensed to fructose 6'.phosphate, some of

which is withdrawn for direct conversi.Qon to' product and some of which is

further reacted within. the Calvin_ cycle to enable continuous operation.

Through a series of reactions- involving aldolases:, transketolases and' other
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Table 1

The following reactions occur in Figure 1 as numbered-

1. C°2 + ribulose diphosphate u e (glycet

2 ... Glyceraldehyde 3 p2 tr'ise_ phosate9 isomerase_ dihydroxyacetone

phosphate

3., Dihydroxyacetone phosphate + glyceraldehyde 3-p2 -al--olase fruc-

tose 1,6-diphosphate

4, Fructose-.6-phosphate + glyceraldehyde 3-P2 -_ransketolas-- Erythrose

4-phosphate + xyulose-5-phosphate

Erythrose-47phosphate.+ dihydroxyacetone-phosphate aldolase sedo-

heptulose-1,7rdiphosphate

5.. Sedoheptulose-77phosphate + glyceraldehyde 3-P2 transketolase xylu-

lose-5-phosphate + ribose-5-phosphate

Xylulose- 5-phosphate eateimerase _ ribulose-5-phosphate

6., 3-Phosphoglycerate 3-phosphgl- erate reductase glyceraldehyde 3-p 2

ATP NADPH

7.. Fructose' 16-diphosphate --fructose diphoshatase fructose-6-phosphate

8, Sedoheptulose 1,7-diphosphate, sedo9-heM Aptule-ioshtase sedohep-

tulose-7-phosphate

9., Ribose -5 phosphate ribosephsphate isomerase ribulose-5 -phosphate

10. Ribulose- 5phosphate phosp-horibulose kinase _ ribulose diphosphate
ATP

11., Fructose-66,phosphate -s bhexiserase glucose-6-phosphate

12. Glucose7 6.- phosphate glu~cs-e -P~-tasie-:- glucose a,D

13., Glucose-6.-phosphate ,Ps glu c n t a glucos.e l-phosphate

14., Glucose-i-phosphate P9°-S~Pb--rl-ase/ starch

It 
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specific enzymes, the fiuctose-6-phosphate regenerates ribulose diphosphate

and the cycle repeats.. As shown, AlTP and NADPH us5t be regenerated and

require special separation procedures. 2

In Figure 1-l1, essentially, each ajor§enzymatic conversion takes place

in a single reactor., Alternatively, a process may be envisioned in which,

after the unique reactor to effect the carboxylation which involves a

three-phase mixture, as many enzymes as possible are combined within the

same stirred-tank reactor. It may be possible in this latter case to

combine sequential enzymes on the same bead. Figure I-2 diagrams such a

scheme., Again the product is taken from the fructose 6-phosphate stream.

This mixed enzyme system is the engineering analog to the conception that

a green plant cell is a ''mixed bag" of enzymes. Clearly, Figures I-1 and

I'-2 represent only two of the many possible design configurations possible.

using the Calvin cycle,

In any design, a basis must be chosen which is commensurate with the

production level required.. For this reason, it is assumed that the gas

feed is the effluent from a fossil fuel burning power plant producing

100.0 Megawatts of electricity. The plant stack gas stream is assumed to

be 2.5 x 106 CFM of which 14% is carbon dioxide. The make-up water is

added to the process as needed. Although drawn as a separate entering

stream, it may be possible to use the make-up water to advantage by com-

bining it with. some operation, such as, ion separation..

A consideration.of the engineering synthesis og the Calvin cycle of

photosynthesis inyvolye many, problems., The following sections discuss

several of these., Four aspects whiGch are, treated in detail are 11 the

design of the immobilized carboxylase enzyme reactor using a stirred tank
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design.? 2) the designn of .the ATP regeneration. scheime using a packed bed

design, 3} consideration of an. ion separatiQn systenl, and 41 energy

requirements. Finally, a section: is included'.which discus.ses: some of

the engineering problems which have not been explicitly treated, and

which may require further development. 
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II. Design of a Continuous Feed Stirred Tank

Enzyme Reactor:for Production of PGA

The following describes the design of a continuous feed, stirred tank

reactor to accomplish the carboxylation step in the Calvin cycle of photo-

synthesis on an industrial scale. The method of design is presented. The

results are given for a design with porous glass, immobilized enzyme

support., Also, a design sketch for a packed tower, an alternative to the

stirred tank, is included. The design is not intended to represent an

optimization due to time constraints. The many variables are interrelated

andit is not possible to solve explicitly for the values to yield the

most economic design. Instead, this paper serves to illustrate what assump-

tions must be made in such a design and to. be 'a guide for more complete

studies,

Reaction:

The reaction to be.carried out is: .

2CO + C=O Ribulose diphosphate
CO2 + |CO Carboxylase i/t

HCOH HO0
HCOH

IH20

Carbon Ribulose 1,5- 3-
dioxide Diphosphate (RuDP)

The chemistry of RuDP carboxylation and cleavage

cules-of PGA has been postulated to follow the course

H2 CO HCOO 13O (25
C=O COn CO HO2 CCH 

HCOH COH COH C=O
I I I

HCOH H. HCOH HCOH

H2 CO( H2 CO® H2 COO

H2 CO®

HOCH' +

COOH

COOH

HCOH

H2 CO Q

-Phosphoglycerate
(PGA)'

to yield two mole-

shown below: (14)

H CO O

[20 HCOH

CO2H

C02H
HCOH

' H2CO
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Design Basis

A design basis must be chosen commensurate with. the proposed scale of

the carbohydrate production. It is assumed that the carbon dioxide source

is the effluent from a fossil fuel burning electrical energy generating

plant.. A 1000 megawatt electrical energy generating plant emits stack gases

of approximately 2.5 x 106 CFM l1) of which 14% is C02 (2). From a liquid

fuel, one might expect an effluent of 14% CO2, 1 - 2 % 02, negligible CO,

500 ppm S02 for each per cent sulfur in the fuel, and the balance nitrogen

(2_). Such a gas is assumed to be the plant feed. Scrubbing and cooling

operations would be required to remove all components which are harmful to

the enzymes and to cool the gases to reaction. temperature· (30°).. Assuming

the dissolved CO2 to be in equilibrium with a C02 gas fraction of 3% and

assuming conversion of 90% of the dissolved CO2, the resulting- glucose pro-

duction is 9.83 x 109 pounds per year.

Enzyme Specifications

1. Equilibrium

The change in free energy for the reaction is -9.8 Kcal per gram

mole (13). At 300 C, the equilibrium constant is 107, which is very

favorable in the direction of PGA production. It is, therefore,

assumed that there is no'limitation due to equilibrium.

2. Substrate concentrations

In dealing with enzymes, care must be taken to limit substrate

concentrations to levels which are not inhibitory. Dissolved CO2 in

equilibrium with 3% CO2 in the gas phase, by Henry's Law, is 7.6 x 10- 4

molar. For RuDP the maximum substrate.level is'assumed to be 10 - 3

molar.. The effect of running such-dilute concentrations of 'the reac-

tants while demanding high levels of carbohydrate production is to
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necessitate very high flow rates.

3. Kinetics

The Vmax and Kin values are presented elsewhere in. this report in

the section discussing ribulose diphosphate carboxylase. The assump-

tion is made that the bound enzyme exhibits 10% of'the activity of the

native enzyme. This reflects activity and Km variation and any diffu-

sion limitation due to the nature of the porous: glass enzyme support.

One may separately consider Km variation [3), but this was not done in

this study. It is assumed that the bound enzyme follows Michaelis-

Menten kinetics. Since the allowed substrate concentration of RuDP

relative to its Km value is greater than the substrate concentration

of CO2 relative to its Km value, it is assumed that carbon dioxide is

the limiting substrate.

4. Matrix support

In the design, glass beads are chosen as the enzyme support.

These are porous, 55 mesh beads. Density of the glass is assumed to

be 2.2 gm/cm3. The diameter of 55 mesh beads is 0.0182 inches

(0.0462 cm). A literature survey of enzyme fixed on porous supports

yields an average value of 100 x 10 3 grams of protein per gram of

support. For the chosen system, this is 6.25 x 10 3 grams of protein

per square meter, if one accepts Weetal's claim that a value of 16

square meters per gram may be achieved with glass of 790 + 50 A pore

size (4).. The possibility of'diffusion limitation due to porous sup-

port is considered following the design-and shown to be relatively

unimportant compared to enzyme kinetics..

Two countervailing factors influencei'the:choice of bead size.. To

minimize diffusion limitations, one decreases- bead size., Since for
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ribulose diphosphate carboxylase there is little diffusion limitation,

the bead size may be increased. Larger beads are easier to screen and

hold within the reactor. Smaller beads are .easier to hold in suspen-

sion, which is essential for good performance. The choice of 55 mesh

beads represents a size most commonly reported in the literature.

Design Outline

The many variables involved in such a design interact in such a fashion

that direct analytical solution is not possible. A design is'refined itera-

tively subject to certain constraints. Tank geometry was constrained within

the limits of standard geometry in the fermentation industry in order to be

able to take advantage of several correlations regarding agitation and aera-

tion (6). A tank size was assumed to be the largest which might be availa-

ble (5). The flow rates must allow the residence time of the substrates

in contact with. the enzyme for a duration dictated by Michaelis-Menten

kinetics. A detailed outline of the design procedure follows. Briefly,

however, it might be noted that the design seeks to calculate a minimum

liquid residence time (i.e. residence time of substrate in contact with

enzyme catalyst) in the reactor subject to conventional design criteria such

as gas holdup, liquid entrainment, void volume fraction, etc., and to match

this time with that required by the kinetics for 'a specified conversion.

This is an iterative trial-and-error procedure.

1. A value of gas holdup is correlated to superficial gas velocity

by~ Hughmarkts correlation (8). Required is .density of solution.

Lilly (3) suggests. 0.95 for void volume fraction, but Perry's Handbook

1)' states that values as low as 0.7 are acceptable. Since the amount

of reaction is proportional to enzyme concentration, void volume frac-

tion of 0,8 is chosen.
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2. From the assumed size of the reactor (cylindrical tank: 20 feet

diameter, 25 feet liquid height, 27 feet total height) the volumes of

liquid, holdup, and glass are calculated for void volume fraction 0.8,

holdup 15%.,

3. The flow rate of gas relates to amount of substrate converted at

an assumed conversion (90%).: Flow rate per reactor relates to total

number of such reactors, given a basis of Overall flow rate.

4.. From glass specifications and assumed enzyme fixed per unit of

glass, the amount of enzyme is calculated. From the volume determina-

tions, the concentration of enzyme is calculated.

5, Concentration of enzyme allows calculation of required residence

time for substrate. Since dissolved CO2 is the limiting substrate,

the liquid residence time is crucial. From Levenspiel (7):

v _ CAo(X) =_ CAo(X)
F -rA VmaxC

Km+C

where r = residence time

V = volume of reactor

F = volumetric flow rate

CAo = entering substrate concentration

rA = rate of reaction

X = conversion

C = substrate concentration in reactor

6. The necessary liquid flow rate with given concentration of RuDP

to stoichiometrically react with the CO2 at a given conversion can be

calculated by mole balance. For a given volume of liquid in the reac-

tor, the residence time of the liquid must match. or at least not be
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less than) the required residence time.

71. The residence time of the gas may be calculated.

8. Assuming baffles and a stirrer to be included, correlations (6)

are used to estimate the power required for agitation in gassed and

ungassed systems. The standard geometry constraint is necessary for

use of these correlations.

9. Pressure head of the liquid may be calculated. This represents

the pressure. over 1 atm to which the gas must be pumped to feed it to

the bottom of the reactor.. Centrifugal blowers are adequate for the

job.,

10. Entrainment of liquid by gas must be checked. This must be small

for good performance, and this is a variable which "trades off" with.

high gas throughput. Correlations are presented in the literature (12).

At the design conditions, entrainment is very low and not a problem.

11.. Heat generation due to the exothermicity of the reaction must be

considered. It is reported (16). that 5.0 Kcal are released per gram

mole of CO2 reacted. The design allows for; 85.8 gram moles per minute

per reactor (0.189 pound moles/min-reactor) of CO2 converted. Thus,

429 Kcal/min (1700 BTU/min): must be dissipated. This amount of heat

exchange may be handled by cooling coils in the tank. Using cooling

water, allowing a 150C rise in the cooling water temperature from for

example 10°C to 250C for a 500C approach to the reaction temperature

of 30°C, would require a flow of 7.56 gallons per minute of cooling

water. This is a small effect and may instead be handled by humidi-

* fication,

12. Diffusion limitations can be a severe hindrance to such a design

using a porous catalyst. The carboxylase. enzyme., however, is known to
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be- a particularly sluggish enzyme (14), and it might be. expected that

the kinetic ''imitations for this' particular case are more' severe than '
r e er

pore diffusions. This may be checked by.:'reference to the Thi"le .modulus 

c., and effectiveness factor, n.. Satterfield C15) outlines procedures

for establishing the importance of diffusion. limitation for the Langmuir-

*Hinshelwdod type of rate "equation, for which the Michaelis-Menten kine-

.tics is an analog. For the case where either the surface reaction or

the adsorption of a single reactant is rate limiting, and allowing for,

possible iinhibition of the reaction rate by either reactants or prod-'

ucts, the rate equation'is taken to be 

k CCO 1 dnco 

+Kc02C C02 + K RuDpCRuDP .dt

where K's are adsorption coefficients and k is.. a readtion rate -coeffi-' :

cient.

The Thiele modulus for such a situation is:

.. · L -l''dn 1

~eff
1

2.c

where for spherical geometry'L =R/3 p(R pellet radius); The effec-

tive diffusivity, iDeff, is assumed;to be that of CO 2 in waer, 3;.'577x: , ,

10 ' 5 cm /sec. For the 10% of Vmax reaction rate assumed' to be possi-

ble, the Thiele modulus is calculated to be 0.00416. For any KA''CA

and any'reaction order', the 'effectiveness 'factor'lis greater'than:09:

This confirms the expectation. that for a very slow enzyme, .such as

ribulose diphosphate carboxylase, the reaction i's kinetically, not

diffusion," controlled. This result may also be found as described by,' ;

* Kobayashi (!0.). 

.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~i . .. .
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"This design does not include the support equipment which such a reac-

tor would require. This includes treatment equipment for the entering gas,

temperature and pH control and instrumentation, and various monitoring de-

vices for liquid level, etc, Also, either some sort of screen to hold the

glass beads fixed with enzyme in the reactor or a centrifugal separator

and recycle system would be necessary. It must also be appreciated that

even immobilized enzymes have finite lifetimes and a resupply system should

be provided.

A schematic flow sheet and summary of the design calculations are pre-

sented on the following page. For a single reactor, a total of 3210 such

reactors are required for the specified production.
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Stirred Tank Design:

Air feed (14% C02)

7.79 x 10z CFM <

RuDP feed

1.225 x 10'4 /min

= 433 ft3/min = 3,235 ga,l/min

RuDP = 7.8 x 10- 3 gm mole/.

Air effluent (3% CO2)

- 6.93 x'102 CFMj

-20' >

1.225 x 104 z/min

C3 = 7 x 10- 3 moles/,

CO2 = 7.6 x 10- 4 moles/I

.RuDP = 10-3 moles/z

Specifications

per reactor

c,= Void volume fraction = 0.8

Gas holdup = 15%

Density (effective) = 1.24 gm/cm3

Volume of liquid + holdup + glass = 7850 ft3

Volume of dead space = 628 ft3

VVM = 0.099 min
-
l

Gas velocity = 0.275 feet/sec

Molecular weight of enzyme = 557,000

Enzyme concentration = 7.94 x 10O5 moles/t

Glass: 55 mesh, porous

Bead diameter = 0.0182 moles = 0.0462 cm

Bead volume = 51.5 x 10-4 cm3

Entrainmer
p = density = 2.2 gm/cm3 fraction

Assume 100 mgm protein . .
fixed/gm glass Thiele moi

Thiele mo(

Pound-moles C02'reacted/min = 0.189

Conversion = 90%

Residence- time'of:li:uid requi.red
=12.3-min

Actual residence time of liquid
12.4 min

Residence time of gas = 13.65 sec

Power required ungassed = 94.8 HP

Power required gassed = 62.6 HP

Reynolds number = 5 x 105

Power number = 6

Stirrer RPM = 39.1

Pressure feed = 1 atm + .914 atm
= 1.914 atm

nt moles liquid entrained/hr ft2
liquid rate + moles liquid

Xentrained

dulus of Satterfield = 0.00416 Efficiency

dulus of Kobayashi = 0.17 * >0.9,

0
f
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Packed Bed Alternative Design

The following page iiluistrates an alteinative design,, a packed bed., 
; * H , . ·,

Since the enzymatic reaction is slow, the bead size may be signific.antly

increased over 55 mesh., without seriously affecting diffusion control. A

large size bead is desirable for packed bed use,, as it allows smaller

pressure drop through the column.

There is, however, a serious drawback. to, the packed bed design.. The

enzyme cannot tolerate a carbon dioxide substrate concentration greater,

than that in equilibrium with a gas phase fraction of 3% carbon dioxide.

In a packed column, then, the maximum substrate concentration is present at

the top of the column and the substrate concentration decreases as one pro-

gresses down the column. This "less than maximum" concentration of sub- '

strate makes for .less than maximum utilization of enzyme.' :: Furthermore, 

the decreasing carbon dioxide concentration makes for alower cncentration '

gradient for mass thraisfer. In addition, assuming that the carbon dioxide

is available as 14% of the gas effluent from the electrical energy genera-

ting plant as before, this stream would have to be diluted to 3% CO2 before

entering the column. In contrast, the stirred tank can operate Continuously

at maximum substrate concentration. .,... . .

For details of a packed bed enzyme reactor, reference maybe made, to ,'

the section of this report concerning ATP generation and to reference (p0).

i i

*, is a as) 1

: · ·k
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Additional Design Proposal:

Co-current flow

Packed tower

'Liquid RuDP feed

Porous beads

Vapor-liquid'

disengagement

Liquid product
Liquid product
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Conclus

Conclusion.

I .

'A design has been presentedfor a continuous: feed s'tirred tank enzyme 

reactor. This type of reactor makes efficient use 'of substrate .and: enzyme,,, '' 

because it allows the maximum substrate concentration to exist throughout ,

the reactor, Although no optimization has been made on this system, and

no quantitative comparison made with a packed bed reactor, this efficient

utilization of enzyme and substrate for what is a very slow reaction lends

credence to a stirred tank reactor being. a judicious choice. Even so, due

to the large amount of carbohydrate produced and the low levels of concen- ,

tration allowed, many such reactors are required.'

Something ought to be said concerning the magnitude of the numbers

presented here. While'three thousand reactors may seem an exorbitant

number, it must be placed in perspective with the production scale. A pro-

duction of 9.,8 x 109 pounds of glucose per'year requires 3.2 x 103 reactors.

This scales down to an annual production of several million 'pounds of

product per reactor.. This is -'not unreasonable in conventional terms.

, '!

.. . . .. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I

, .~~~~~~~·

i

: ,,~~~~~~~:

.'" i 'I , . '

. I



- 158 -

References

1., Sherwood, Thomas K. Department of Chemical Engineering, University of
California, Berkeley, California. Private Communication.

2. Johnson, Elmer. Pacific Gas and Electric Company. San Francisco,
California, Private Communication.

3. Lilly, M.D. and Sharp, A.K. "The Kinetics of Enzymes Attached to
Water-Insoluble Polymers", The Chemical Engineer, January/February,
1968; p. CE12.

4. Weetal, H. '"Trypsin and Papain Covalently Coupled to Porous Glass:
Preparation and Characterization"', Science, vol. 166, October 31, 1966;
p.. 615.

5.. Peters, Max S. and Timmerhaus, Klaus .D. Plant Design and Economics
for Chemical Engineers, McGraw-Hill Book Co., Second Edition, 1968.

6., Aiba, S., Humphrey:, A.E.', and Millis; N.F. 'Biochemical Engineering,
Academic Press, NewXYork, 1965.

7. Levenspiel, Octave. Chemical Reaction Engineering, John Wiley and
Sons, Inc.,, New York, 1962.

8. Hughmark, G.A. "Holdup and Mass Transfer in Bubble Columns", I. & E.C.
Process Design and Development, vol. 6, no. 2, April, 1967; p. 218.

9. Lilly, M.D. Hornby, W.E. and Crook, E.M. "The Kinetics of Carboxymethyl-
cellulose - Ficin in Packed Beds"', Biochem. J., 100 (1967); p. 718.

10. Kobayashi, T. and Moo-Young, M.. "Backmixing and Mass Transfer in the
Design of Immobilized-Enzyme Reactors"', Biotechnology and Bioengineering,
vol. XIII (1971); p. 893.

11. Perry, John H. Chemical Engineer's Handbook. McGraw-Hill, New York,
Fourth Edition, 1963.

12. Treybal, Robert. Mass Transfer Operations. McGraw-Hill, New York,
Second Edition, 1968.

13. Bassham, J.A. and Krause, G.H. "Free Energy Change and Regulation in
Steady-State Photosynthetic Carbon Reduction", Biochimica et Biophysica
Acta, 189 (1969); pp. 207-221.

14. Kawashima, N. and Wildman, S.G. "Fraction I Protein", Annual Review of
Plant Physiology, vol. 21, 1970.

15. Satterfield, C.N.. Mass Transfer in Heterogeneous Catalysis, Addison-
Wesley Pub., Co., Massachusetts, 1968'.

16.. Weissbach., A., Horecker, B.L. and Hurwitz, J'. t'The Enzymatic Formation
of Phosphoglyceric Acid from Ribulose Diphosphate and Carbon Dioxide",
J. Biol.. Chem., vol. 218, 1956; p. 795.



- 159 -

:IT., Design. of an. Enzyme Reactor for ATP Regeneration,

Reactions' 6 and :l10 of the procesSing sequence outlined in. the Irntro-

duction Section I utilize the high energy phosphate. compound, adenosine

triphosphate CATP1 as a source of chemical energy.. ATP is converted to

adenosine diphosphate (ADP) which must be regenerated to ATP in order that

the Calvin cycle may proceed continuously. A hypothetical process for

ATP regeneration with acetyl phosphate is outlined below, with particular

consideration to design of an enzymatic reactor containing acetate kinase

bound to glass particles in a packed column. It is assumed that ADP enters

the regeneration process following separation from other reactants and

products by methods which have not been developed. fully in the present

study. The proposed reaction sequence is as follows:

Reaction 1) ADP + Acetyl-P ~ Acetate + ATP
Ac ·-tate kinase

Al PO CatReaction C2) CH3COOH 4 Cat CH=C=O + H20
700 0 C

Reaction [3) C H2 =C= + CH3 COOH - CH -- O--CH3

Acetic anhydride

Reaction C4) Acetic anhydride + phosphate PrC ,pH 7. Acetyl phosphate0 C, pH 7.0
(as phosphoric
acid)

The flow' sheet of the process is shown in Figure II.I-1.

Ih the Calvin cycle 3 moles of ADP are produced per moleof CO2 con-

yerted to glucose., Assuming the same design. basis for the PGA reactor

described above., the. feed stream to the ATP regeneratiQn process will con-

sist of 3,93 x 10, lmm, of aqueous solutioQnwith an AD? content of 1727

lb. moles/m, Figure 1,I-1 illustrates the sequence of process steps.

Acetyl phosphate C1727 lb, moles/ml is added and Reaction. C1 occurs in the
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enzyme reactor to produce ATP and acetate'. A 95% conyexrs,i.Qn is assumed

and tie. unreacted ADP and acetyl phQsphate. C90. 9- lbh m.ole(ml is, recycled.

A series of iponexchange columns is used to separate the effluents of

the enzyme reactor., The RuDP (683 lb moles/m) and ATP (1727 lb moles/m)

fractions are sent back to the carboxydismutase system at the start of the

cycle, The acetate fraction, eluted with HC1 to produce acetic acid, is

utilized to regenerate acetyl phosphate.

This fraction is split in two equal parts, the first half of which

produces ketene .(Reaction (-2)) in the ketene reactor. Al PO4 is used as

catalyst and conversion per pass at 700°C is about 80% (12). Heat

exchangers H1 and H3 are coupled (Caverage duty 1.39 x 107 Kcals/min) to

heat the incoming stream and cool the effluents respectively. Heat

exchanger H2 is used to control the reactor temperature at the desired

level. Reactor products are separated in a gas-liquid separator (b.p.

ketene -56°C, b,p. acetic acid 118°C) and the product ketene (gaseous) is

sent to the acetic ankydride reactor. The liquid fraction from the

separator Cmainly unconverted acetic acid and water) is sent to a dryer

to remove water and is recycled.

The second fraction of the original acetic acid stream (liquid) is

sprayed in the anhydride reactor where it comes in contact with. gaseous

ketene to produce acetic anhydride (Reaction. (3))., The conversion here is

fairly high, about 9Q0% C12), and the effluents pass through heat exchanger

H4 which cools- it down. to 1360°C. At this: .temperature, only acetic anhydride

is a liquid whilch_ is separated from the unreacted gases and transported to

the::acetyl phosphate. reactor, 

The present knowledge of Reaction. C4) C13} for producing acetyl phosr

phate from acetic anhydride at 0°C, phf 7,0', with addition of phosphate and
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pyridine, Ccata.lyst)j :ndicates a low conversa- n of 4Q% per pass.. Hence,

a major separation problem exists wi:th reactor effluents. whik will

require further researci... H5 is a refgrigeration system (average duty

5.78 Kcals/m) used to cool the incoming reactants to 0°C..

-Descriptiond of Process Units

Item § Description

Enzyme reactor Packed bed of porous' glass beads coupled
with acetate kinase enzyme. Reaction taking
place.

ADP + acetyl-P ~ ATP +.acetate. Temp. 25°C.

Acetate
kinase

Ketene reactor

Ac-Anhydride reactor

Ac-P reactor

H1' H2 , H3 , H4 , HS

R

Dryer

Reaction .....-----
CH3COOH 7OQC A-PO Cat CH2=C=0 + H20

3 700.0 C, AlPO4'¶at

Reaction CH3 COOH + CH2=C=O

0 0

, CH -~-O-A-CH

Ac-Anhydride + phosphate Ho 7.0 d Ac-P

catalyst

Heat exchangers, H1 and H. are coupled and the

average duty is 1.39 x 10 Kcals/minute. H2

-is an auxiliary heat exchanger for obtaining

the desired temperature of 700°C in the Ketene

reactor.. H4 cools the anhydride reactor effluents

to 1360°C H is a refrigeration unit, average

duty 5.78 x 1Qu Kc4ls/minute.

Reboiler,

To rem.oe water from the recycled stream of
unconverted.ace.tic 'acid and water..
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'Enzyme ReactoQr'De:,ign-

1. 'Theory

Immobilized -enzyme. reactors- have been analyzed by Kobayashi and

40oo Young C1) and Lilly, Hrnby and 'Crook C21. The former is a compre-

hensive analysis- taking mass transfer effects in full consideration,

together with the enzyme catalyzed reaction given by Michaelis-Menten

type kinetics., This is followed in our design.

The reaction is carried out in a.packed bed of porous glass beads

coated with the enzyme acetate kinase. The properties of the free enzyme

have been reported by Rose et al. (3), Rose ('4) and most recently by

Satchell and White (5). Since all of the studies were made in free solu-

tion allowance has to be made for the bound enzyme in our system. Average

k2 E (k2 = M.M. type 'kinetic const, E enzyme fixed per unit volume of sup-

port) is arbitrarily.chosen as 1/10th that of free enzyme. This is believed

to be a conservative estimate.

Traditional chemical engineering methods are followed in estimation

of mass transfer coefficients (6,7) and pressure drop (8) in the bed. It

is assumed that there is no previous separation step before' the enzyme

reactor, and hence the total liquid flow of 3.93 x 107 liters/min, has to

be handled.

2, Parameters Used for Design Calculation '

a E - gm of enzye fixed
al c. of' support'

Weetal 's: Cll1 work was followed on- coupling of; trypsin and papain an.

9i6% silica glass (porous, surface area 16;m n2 [gm1 and an ayerage value of

m'g active 'enzyme5.00m g oti "glanz was chosen. Proper unit transformation gives

kfijm~ ~ 1.Of x1.gin glass

c..c glass
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b) k2 - Sec
-
1

Satchell and W4ite':s. 5) reported k2 in fTee solution = 1.17 Sec 1 .

For bound enzyme k2 'was- arbitrarilyv chosen: 1/lOth of, that in, free solu-

ti'on. Scanty reports' are available in the literature in this.matter and

experimental work is- needed..

cl K
m

- 0ichaelis-Menten Const.)

-3 molesValue reported by Rose (4) was used, Km= 1.5 x 10 liter

d) Li c mg C-mass transfer coefficient in liquid film).

Ranz "'s (6) correlation was utilized in evaluating kL after calcu-

lating NRe and NSC, knowing superficial velocity US.

e) C E void fraction

Void fraction was chosen to be 0.4 for the packed tower.

f)- S _ ginLs
o c ,c.,

Concentration of ADP in the stream from the carboxydismutase reactor

was calculated to be 8.2 x 10 -
3 gm/c.c. A 95% conversion was assumed.

3.. Integrated Design Equations.

The analysis and derivations were obtained from Kobayashi and

ibo-Young C1).

For plug-flow conditions the integrated final form of the design

equation for the enzyme reactor was

SoCl:Ye)- = I C t + 3/4 c')lnYe + t,

The symbols are explained under Nomenclature,.

4, Results and Dis,cuss$ion

Convers:ion. is assumed at 95%., Table lCal compares the performance of

porous and nomnporous: glass beads·as enzyme -.upport and the advantage of.

porous support becomes, apparent, Since porous beads possess more surface
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area the required height is about 1/200QQthof that of a, packed bed of

non-porous glass beads-.. However, the enrnmous:. pressuure, drop in either

bed' rules out the use of a single. reactor..

No useful improvement -in. pressure drop is obtained by decreasing L/D 

with a single reactor (Table lb3)).. Using 100 reactors, however, the

pressure drop is brought down to 3080 H.P.

Table 2 shows calculations for d = 1 cm. Decrease in L/D ratio

from 3..74 to 0..42 decreases pressure drop per reactor from 16,850 H.P. to

55 H.,P A calculation of Thiele parameter, however, rules out use of

porous beads with d = 1 cm, since as shown in Appendix A, this gives an
p

effectiveness factor of 0.094. Because of their large diffusional resis-

tance the glass beads are practically behaving as non-porous supports

and the substrate uses only a fraction (%0.10) of the available bound

enzyme,

Table 3 shows similar results with 1000 reactors and diameter of

porous glass beads = 0.1 cm. Pore diffusion consideration for this case

CAppendix A) gives a Thiele parameter of 1.0 and an effectiveness factor.

0.90. Pressure drop is reduced to a more reasonable level of 27.9 H.P.

at L/D = 0.,54. A correction factor (corresponding to effectiveness factor

of 0.,90) may be applied and the length of 0.54 M increased to 0.60 M to

take care of pore diffusion..

A practical design for the system might he. as foilows:

Number of enzyme reactors:- 1!QQ00

Length- 0,60 M

Diameter = 7.94 M

Average residence time = 6,5. Sec.,

Pressure drop/reactor = 27.9 H.P.,
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The number of reactors is. not unreasonably higk in view, of the large plant

capacityr of 1 0 10 lbs gluc6se per year and total liquid4 flow rate of

70,500_ ft3/Sec '
. . . . .f 

d Ty

-Cm) '

1 ..0 Poro

. .1,O..Non-

Table 1

a-'Comparison of' Porous and Non-porous Supports

Conversion = 95%

Mpe E No., of Liquid D
flow rate

(gm/cc). reactors (liter/min) (l (

7)us 0,014 1.0 3.93x10 80.0 2c

-porous' 1.86x10-
'
7 1.,0 3.93x107 80.0 647(

b) Performance Comparison of

L

(M)

9.52

0.0

Apl1

(H.P.)

2x106

4x108

Single/multiple Reactor with Porous Support

d = 1 cm; porous
p

k2E = 1.64 x 10
-

3 c gmsc

Total liquid flow rate = 3.93x107 liters/min.

Liquid flow
in each
reactor

(liter/min)

3 93x107

3 ..93xlQ7

3,93x105

Conversion = 95%

L D

(CM) (M)

29..52

2.2.,70

23 ..8Q

80.00

1130,00

11,3Q

Total
Reactor Vol.

(43)

1.47x10 5

2,27xlQ5

2.38x105

AP
L/D

(-H.P.)

0.368

0.,QQ002

2.12.

2x106

2.93x105

3080

No. of

Reactors

1,0

1,0

100.,O

1pressure drop is expressed in. term of'the equivalent pumping'power

requiremient at the. stated flQw rate.

Jk_--

I -
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Table 2 :

Effect' of 'yariation in L/D on Reactor Design at d - l'cm

Enzyme support: porous glass: beads, di'ameter 1 cm.

7Liquid flow-rate; 3.93 x 10 liters/min.

Number of reactors; 100,

Inlet ADP flow rate; 1818 lb moles/min.

Conversion: 95%

k2 E = 1.64x103 c.s

D Total u
Reactor L/D

ters) (Meters)l olmne Ccm/sec) Csec)

3.8 8.,0 1490x102 3.74 13.10 91.0

.,8 11.,3 2380x102 2.12 6.55 146.0

L.6 25'.3 5300x102 '0.42 1.31 323.0

Table 3

'Effect of Variation in L/D on Reactor Design at dp = 0.1 cm

Enzyme support: porous glass beads, d = O.1'cm

Total liquid flow rate: 3.93 x 107 liters/min.

Number of reactors: 1000

Inlet ADP flow rate: 1818 lb moles/min.

Conversion; 9.5% 

k2 E - 1.65xlQ c
-

c, sec.

L D Total

,Reactor L(D . 'U T
Ojetersl Meters y - I per

... :':'':''"''"'' .. '' Ccm,/sec'' '(sec) ' (

1,92 3.,56 1.92x104 0,540 6.55 11.7 2

4... 54 .... .7.94 -2.7x10. 0.068 1.31 16.5

AP

per Reactor
(H.P.)

16,850

3,080

55.

r Reactor
R.-PJ)-' .

2470

27.9
.1�

I 4
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Appendi.x A:

· Effect 'd 'PQre 'Diffusii oni. Desi'gn,'Calculations

The'mass transfer resistance inside the pores was neglected during

theoretical analysis giving rise to equations used in design calculations.

The yalidi'ty of this assumption will be tested by evaluating the Thiele

modulus of the system.,

Reaction rate:

[k2E/ CI/Hi]S* for Km/H >> S* (1)
k
2
EHS* =

2 k2E for km/H < S* (2)

For present design calculations

Km/H = 3,0 x 10'3 gm/cc = 7.0 x 106 gm-mole
c.,..

S* = 2.8 x 10-4 gm/cc = 5.6 x 10
-

7 gm-mole
c.C,

Therefore: K /H >>S*, and equation (1) applies

This is a first,order reaction Cn = 1),with kinetic
kzE

constant k =
-

3.24 x 108 3 -1
4.63 x 10' Sec

7.00 x, 10 

According to Onda et al. C9) the Thiele modulus h for reaction order n

is given by

hi. = V $ k sp_ C31s. 2-

A similar relationship is also given by Petersen C1Q..,

For d'=·I cm

- 4.6'3xl0 3

h = x 0Q,5 = 10.70

Effectiveness Factor (Asymptotic Solution for I > 3.,0) E.F.,

- 1 = 0.09410,70



- 168 -&/

The glass beads are practically behaving as: non:-por,ous: supports, since

the substrate utilzes only, a fraction. (_0Q...lO0j of the.,ayailable surface

area bound enzyme.. The system is vastly, und'edesigned'.

Ford . .1:cm

_ 4.63x10 h l46x x 5 x 10 -2 1.,070
10

EF. > 0.,90

In this case the internal mass transfer resistance may be neglected since

the Thiele parameter is small and effectiveness factor is very near to

unity.,
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Nomenclature

Any' system of consistent units may b.e use.d.

a external surface area of support per unit yolume of reactor, L

D diameter of reactor, L

DL.molecular diffusivity of substrate ADP), L2/t

D diffusivity of substrate within the support (asseumed to be 10 5 cm2/sec),S.
L /t

d diameter of support particle, L

E enzyme concentration in support, M/L

EF effectiveness factor, dimensionless

H partition coefficient, dimensionless

h Thiele modulus-

Km Michaelis-Menten constant, M/L3

k reaciion rate constant when r6action rate is expressed in the form kSn,
(M/L ) nt-.

kL mass transfer coefficient in liquid film, L/t

k2 rate constant, t'

L reactor length, L

NRe Reynolds number = udpp/P, dimensionless

n order of reaction

r reaction rate, M/tL3

S substrate CADP) concentration, M/L3

S substrate AD. concentratipon of feed, M/L3

S* concentration of subs5txate CADP1 at the surf, ace. of supportt M/L3

u superficial yeloci.ty of liquid, L/t

Y' dimensionless concentration C=S!So I

Ye outlet dimensionless concentration.'of substrate

z dimensionless longitudinal distance = 1/L
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Greek Letters

a dimensionless parameter = kzE 7 -- lJ/kLaSo

3.
'~ uso, M/L3

f dimensionless parameter = Km/lSo

=':- SO, M/L3

C void volume per unit volume of reactor, dimensionless

* dimensionless parameter = aw

·'-. = S
°

s, M/L3

p density of substrate solution, M/L3

p viscosity of substrate solution, WMtL

T retention time, L/v, t

w dimensionless parameter CkLa/ElT
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IY, Separa thidn:Of 'RSuDP and' PGA 'by'Dalysi's

An essential consideratior in. the synthiesis of .the Calvin. cycle is

the separation of thei products from the'yari'Qu. reactors. As an example

of the problems involved, a hypothetical process for the separation of

PGA from the RuDP-,PGA solution coming from the firs~t reactor of Figure I-1

was' inyestigated, The method selected employs a multistage dialysis

cascade which is shown schematically in Figure IV-1. A unique feature of.

the process is the employment of evaporation to establish effective driving

forces for diffusion, and also to reduce the membrane area relative to

that required for more dilute solutions.

The membranes were assumed to have the properties of the Dow Chemical

Co, hollow fiber membranes. These were cylindrical tubes of cellulose

with an average pore diameter of 20 i.. From the reported data on the

separation of NaCl from raffinose in aqueous solution, and from the pre-

viously observed variation of the diffusion coefficients with the solute

molar volumes Cl) the capacity coefficient for the membranes, UA, was

empirically fitted to a simplified form of the more general euqation pre-

sented by Perry (2):

UA = 1,02 x 103 VA6 + 0.752/F) IV-1

where UA = overall capacity coefficient for component A, 9/cm2 min

VA = molar volume of A, cm 3gm mole

F = the Faxen d.rag factor

The diffus ion. flux of a given. component across the membrane is given

by the equationL

NA = UACCA1CA2.1 IV-2

where NA = diffusion flux of component A, gm moles/min cm2

CA1,CA2 = concentration of component A on. si.des- 1 and Z, respectively,
gm moles/liter
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Fig.. IV-1. , FLOW, DIAGRAM FOR DIALYSIS SEPARATION PROCESS

M = membrane unit
,I~ Ir-~F

.H2 0

)p Product: .
9 9o °%,- GA '
0.97% RuDP r,'.

41..:84%, PGA
58.16% RuDP' /

/ ·
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For any stage, N, in a cascade, the mass.b.al1ance and flux equations

must be' satisfied for each' component., These equations: are. 

LN+i XA,N+l + VN:1- YA.,N.1 =N XA,N +
¥NYA IY-3

VN YA,N = UA ACCAICA2 IV-4

YN(1YA,N)- = UB A(CBl.CBI 2 ) IV-5

where

L = total flow of solute.exiting from the feed side of the stage
Cside 1), gm moles/min

V = total flow of solute exiting from the dialyzate side of the
stage (side 2), gm moles/ min

XA,YA = mole fraction of component A in the feed and dialyzate streams,
respectively

The concentrations on either side of the membrane can be maintained

at desired levels by control of the water content of the s-treams through

evaporation. and adjustment of the fresh water flow rate into the dialy-

zate side.

A numerical solution by computer was worked out for the following

separation and operating conditions:

Total number of stages: 20

Feed stage Cfrom top): 11°

Gross feed rate (before evaporation): 3.93 x 107 U/min

Gross feed composition; PGA = 6.78 x 10-3 M

RuDP = 1.0 x 10 -3 M

Net flow to feed .tage; 3.93 x 105 /!mi.

Ratio of solute to sQlyent. ,778 mQles~ solute/'liteQr water

Ratio of dialyzate flow, rate to feed flow rate into each stage = 1Q

Feed composition.' Qwater free basi's)L .,'RA, CQole. fraction[ = 0.,871

' uDP Crmole fractionl = 0.129
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Top product com~position C(Water free. basisl: PGA (mole fraction)

ROuDP tQle fraction)

Bottom product coqpositi on. Cater free, basi.s)

PGA (mole fractionl = 0.4184

RuDP (mole fraction) = 0.5816

Split of feed (solute only).; Top product? 80%

Bottom product: 2.0%

% Recovery of PGA = 90.96%

Ratio of L to total moles of solute in feed = 1.5

Membrane area required.(per mole of feed per min):

2 2Stage. Area Cm2) Stage Area (m2

1 Ctop} 7.,0239 11 (feed) 25.5978
2 ,24.2543 12 25.6859
3 24.3718 13 25.8324
4 24.4995 14 26.0755
5 24.6367 15 26.4754
6 24.7825 16 27.1213
7 24.9358 17 28.1318
8 25.09.54 18 29.6361
9 2.5.,2598 19 31.7190
10 25.4277 20 34.3352

Total area for full 2

* Total area/mole feed/min = 510.5980 m2

scale process = 156,140,856 m2
78,482,732 ft2= 1,678,482,732 ft

'Discussion

I't appears that a good recovery and purity of PGA is possible with.

dialysis provided that. i is, permissibhle to recycle the bottom product

mixture of PGA and ARuDP to the first,'reactori HUoeyeT, 'the total cost

should be determined for comparison, wkth-possible, alternative methods".

Detailed analysis of the heat or powrequire mient for eyvaporation..

has not been included in this study., .. I actual practice heat recovery

= 0.9903

= 0.0097

. I 
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would be effected througt. the, use of multi-tefject evaporation or vapor

recompression principles, in whiclh water vapor rfoom a stage is used to

evaporate water in. that stage, r in. other stages at lower pressures.

In the present. example? a total evaporation requirement. of 4333 lb

of water per lb of feed is indicated. .By suitable heat recovery arrange-

ments, it might be possible to obtain an evaporation'of 10 lb'of water

per lb of steam supplied for evaporation (or its equivalent in vapor

recompression). This would result in a net steam consumption of 385 lb

per lb. of PGA recovered, This :obviously is a serious cost factor

amounting to on the order of $.05/lb of PGA, or $.10/lb glucose product.

It is not possible to estimate the membrane co'stsbecaus'e present

prices are based on small scale usage. As a rough. estimate,. assuming

that cost decreases with capacity, the membrane units specified here

might cost $5.00/ft2 ., Approximately 0.337 ft2 of membrane is needed per

lb of PGA.recovered per year. Total membrane cost' for the present example

would be $8..4 billion! It should be noted that the present process assumed

well-mixed stages, whereas in practice a counter current flow of dialyzate

versus feed streams would probably be used. Counter.' current flow would

provide a larger average driving force for diffusion and'give a lower mem-

brane area requirement. In this present case, about a50%. reduction in

area would result. Therefore, the present design is conservative.

Further study of the present type of dialysis separation will be

required to establish optim.um arrangements of stages and flow rates..' For

exaimple, the s eparattion esztiated aboye. required' ZO stages, whereas the

min'mnum number of 'stages as ccording .to the .Fenske equation.is 5.2 stages.

This- suggests- that further improvemnent in the process 'is possible.

.r.· . .. ,
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On the basis- of the.rough costs estimate-d above, the proposed method

does not appear economcally, feasible at present glucose prices. Very

substantial improvements in. diffusion rates:.through. the membranes and

energy/ reduction will be necessary.. However, the method may be useful in

special situations: where higher separation expense can be justified.
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Yy..' Energy, Considerations:

The present process replaces the' energy normally- received from sun-

light in photosynthesis by, energy in the form of heat of combustion from

fossil fuel or equivalent. electrical energy'., Major energy inputs are

associated with the chemical regeneration of ATP and NADP along with other

inputs for separation processes, pumping of fluids', etc.

The minimum energy requirement to produce glucose from CO2 and H20

must be the heat of combustion of glucose, or 6730 BTU/lb of glucose.

If hydrocarbon oil is burned to produce the C02, i.e., from power plant

stack gas, and if it is assumed that only 90% of the CO
2
supplied to the

process is converted to glucose because of incomplete absorption in the

carboxylase reactor, then 42.7% of the available thermal energy of the

power plant fuel would be required to provide the minimum heat for the

glucose production.. This estimate assumes a normal boiler furnace thermal

efficiency of 80%. However', this total energy estimate is conservative

because of other inefficiencies of the various process steps.

To provide a more realistic estimate of the energy requirement, the

heat necessary to regenerate ADP to ATP according to the process described

in Section III was estimated. As a rough.estimate, the regeneration energy

inputs amount to 4'2.7 BTU/lb ATP formed. Each lb of ATP releases 24.9.BTU./I,

of:'chemical energy to drive the photosynthetic reactions., The overall

thermal efficiency of this step is, therefore, only 58.1%.l If it may be

assumed that a s'imilar ther.mal efficiency would b. obtained in NADP'

regeneration, a reyised nnjui. energy- input of 11,S80 BTU/'lb of glucose

produced will be necessary, This: latter figure i.s equivalent to 73.4% of

the. energy' available from cormbustion of the fuel ';oi'l.,
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It would appear, therefore, that the' idea of employing this process as

a means-of utilizationof power plant. stack-gases: i.s probably' unrealistic,

If other' ineffi:ciencies- i'n. energy' utilization, including separation process

requirements are considered there would be very little, if any, energy

left for power generation, The combustion facility might as well be

designed specifically for carbohydrate production.

I't is evident, therefore, that any further engineering assessment

of this process should give careful consideration to energy requirements

and methods for minimizing all thermal inefficiencies in the various

process steps,
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Vyr. Other Engineering 'Aspects 

Fundamental information_ is needed on the kinetic. parameters and

yields of the various enzymatic reactions.. Stutable enzyme supports and.

activities in insolubilized form should'be determined to permit. reactor

design for each. step.

Further study of energy requirements, including heating and cooling

of process streams, pumping and other utility needs is necessary.

Additional consideration should be' given to alternative sources of

CO2 of the required purity. Sources of the various enzymes in large

quantity' must also be developed..

Alternate types of processes should be investigated for separation

of inorganic ions in view of the excessive costs estimated for dialysis.

Also, the choice of method for separating the product glucose from inor-

ganitc impurities must be made.

The foregoing sections:have' endeavored t6 y:indicate'a number 'of repre-

sentative problems which arise.in. the assessment of this particular

immobilized enzyme process. In -addition, there are those aspects which

are involved in morneconventional chemical process designs.


